
VERSION CONTROL WITH
GIT AND GITHUB

Keeping history of changes

“Piled Higher and Deeper” by Jorge Cham, http://www.phdcomics.com

The lame way
•  Multiple dated files with largely the

same content
•  Periodically zipping files up into

numbered/dated archives

The right way
Version control is the only reasonable
way to keep track of changes in code,
manuscripts, presentations, and data
analysis projects
•  Backup of your entire project
•  Promotes transparency
•  Facilitates reproducibility
•  Faster recover from errors
•  Easier collaborations

Why version control
•  Version control is not strictly necessary for reproducible research,

and it’s admittedly some extra work (to learn and to use) in the short
term, but the long term benefits are enormous

•  People are more resistant to version control than to any other tool,
because of the short-term effort and the lack of recognition of the
long-term benefits

•  Imagine that some aspect of your code has stopped working at
somepoint. You know it was working in the past, but it’s not working
now. How easy is it to figure out where the problem was introduced?

http://guides.beanstalkapp.com/version-control/getting-started-with-git.html

What is Git
•  Git is an open-source distributed version control system

•  Developed by Linus Torvalds (developer of Linux)
•  Distributed, distinct from centralized (subversion)

•  Authors can work asynchronously without being
connected to a central server and synchronize their
changes when possible

•  Complete audit trail of changes, including authorship
•  Freedom to explore new ideas without disturbing the

main line of work
•  Collaborate with elegance – on any file at any time

https://git-scm.com/downloads

Sequential snapshots of
incremental changes

Advantages of version control:
•  It’s easy to set up
•  Every copy of a Git repository is a full backup of

a project and its history
•  A few easy-to-remember commands are all you

need for most day-to-day version control tasks

STEPS IN VERSION CONTROL

First steps with Git
Download and install Git, https://git-scm.com/downloads.
Do not install GUI client

•  man <command>. man git - not always good
•  git --help [<command>]

Setting up git
•  git config --global user.name "Your name here”
•  git config --global user.email your_email@example.com
•  git config --global color.ui “auto”
•  git config core.fileMode false
•  git config --list

Configuring text editor
Editor Configuration command

nano git config --global core.editor "nano -w"

vim git config --global core.editor "vim"

Text Wrangler git config --global core.editor "edit -w"

Sublime Text (Mac) git config --global core.editor "subl -n -
w"

Sublime Text (Win)
git config --global core.editor "'c:/
program files/sublime text 2/
sublime_text.exe' -w"

Notepad++ (Win)

git config --global core.editor "'c:/
program files (x86)/Notepad++/notepad+
+.exe' -multiInst -notabbar -nosession -
noPlugin"

Kate (Linux) git config --global core.editor "kate"

Gedit (Linux) git config --global core.editor "gedit -s"

Git concepts
Two main concepts
•  commit - a recorded snapshot of differences you made to your

project’s files
•  repository - the history of all your project’s commits

Files can be stored in a project’s working directory (which users see),
the staging area (where the next commit is being built up) and the local
repository (where revisions are permanently recorded)

Starting git repository
Exercise:
•  Make a folder. Check with ls
•  git init - initializes a repository. .git folder contains all Git

info - remove it and all will be lost
•  git status - to see the status of your repository.

Lifecycle of files in Git repository
-  Untracked
-  Modified
-  Staged
-  Committed

Tracking Changes
•  git add - puts files in the staging area
•  git commit - saves the changes in the files on

staging area to the local repository. Always write an
informative commit message when committing changes,
"-m" flag

•  git status - shows the status of a repository

What to add
New repository from scratch
•  The first file to create (and add and commit) is probably

a README.md file, either as plain text or with Markdown,
describing the project

A new repo from an existing project
Say you’ve got an existing project that you want to start
tracking with git. Go into the directory containing the project

•  Type git init – itinializes empty repository
•  Type git add <file> [<file> <file> …] - start

tracking all the relevant files
•  Type git commit – saves the snapshot of your

current files

What’s not to add
git add ., git add –u – add all the changes (updates) in your
files

•  Don’t include files that are derived from other files in the repository
•  Be careful about committing binary files, or really big files. Git works

best with text files, like code, you can see differences. With binary
files, you just get a bloated repository. If you’ve committed a big file
to your repository, it’s there forever.

•  Exercise: commit an image, overwrite it with another, git diff
•  git rm <file> - removes a file from the current and future

commits, but it remains in history/repository
-  The .gitignore file tells Git what files to ignore. git add -f

forces adding

Ignoring unnecessary files
•  The various files in your project directory that you may not want to track will

show up as such in git status
•  Unnecessary files should be indicated in a .gitignore file
•  Each subdirectory can have its own .gitignore file

Also, you can have a global gitignore, such in your home directory, e.g.
~/.gitignore_global, which contains:

*~
.*~
.DS_Store
.Rhistory
.Rdata
.Rproj

You have to tell git about the global .gitignore_global file:

git config --global core.excludesfile ~/.gitignore_global

When to commit
•  In the same way that it is wise to often save a document that you are

working on, so too is it wise to save numerous revisions of your code
•  More frequent commits increase the granularity of your “undo” button
•  Good commits are atomic: they are the smallest change that remain

meaningful

-  One commit = one idea or one change
-  Think of ONE feature/task/function that needs to be fixed/added
-  Do the work
-  Test that it is okay
-  Add and commit

http://blog.no-panic.at/2014/10/20/funny-initial-git-commit-messages/
http://www.slideshare.net/rubentan/how-we-git-commit-policy-and-code-review

git commit best practices
ADVICE: Good commit messages

•  A good commit message usually contains a one-line description of the

changes since the last commit and indicating their purpose

•  Informative commit messages will serve you well someday, so make a habit
of never committing changes without at least a one-sentence description

http://docs.gitlab.com/ee/workflow/gitlab_flow.html
https://xkcd.com/1296/

Anatomy of git commits

•  Each commit is identified by a unique “name” - SHA-1 hashtag
•  SHA-1 is an algorithm that takes some data and generates a unique

string from it
•  SHA-1 hashes are 40 characters long
•  Different data will always produce different hashes
•  The same data will produce exactly the same hash

Exploring History

git log - lists all commits made to a repository in reverse
chronological order.

Useful flags

-p – shows changes between commits
-3 – last 3 commits, any number works
--stat – shows comparative number of insertions/deletions
between commits
--oneline – just SHA-1 and commit messages
--graph – prettier output
--pretty=short/full/fuller/oneline
--since=X.minutes/hours/days/weeks/months/years
or YY-MM-DD-HH:MM
--until=X.minutes/hours/days/weeks/months/years
or YY-MM-DD-HH:MM
--author=<pattern>

Exploring changes
Exactly what changes have you made?

git diff – shows all changes that have been made from a
previous commit, in all files

git diff R/modified.R - see your changes of a
particular file

To see the differences between commits, use hashtags: git
diff 0da42ba 5m5lpac

The differences between commits for a specific file can be
checked using git diff HEAD~2 HEAD -- <file>

Undoing things: Unstaging
There are a number of ways that you may accidentally
stage a file that you don't want to commit

git add password.txt

Check with status to see that it is added but not
committed

You can now unstage that file with:

git reset password.txt

Check with status

Undoing things: discarding changes

Perhaps you have made a number of changes that you realize are not
going anywhere. Add what you ate for breakfast to README.md. Check
with status to see that the file is changed and ready to be added

You can now return to previous committed version with:
git checkout -- README.md

Check with status and take a look at the file

You can return to a version of the file in a specific commit
git checkout m5ks3l8 README.md

If you want to correct the last commit message, do
git commit --amend -m "New commit message"

Undoing things: removing from
repo

Sometimes you may want to remove a file from the repository after it has been
committed. Create a file called READYOU.md, and add/commit it to the
repository

You can now remove the file from the repository with:
git rm READYOU.md

List the directory to see that you have no file named READYOU.md. Use git
status to determine if you need any additional steps

What if you delete a file in the shell without git rm?
rm README.md
What does git status say?

Oops! How can you recover this important file?
git checkout -- README.md

Undoing things: the big “undo”
button

It is possible that after many commits, you decide that you really
want to "rollback" a set of commits and start over. It is easy to
revert all your code to a previous version

You can use git log and git diff to explore your history
and determine which version you are interested in. Choose a
version and note the hash for that version

git revert b5l9sa4

Importantly, this will not erase the intervening commits. This will
create a new commit that is changed from the previous commit
by a change that will recreate the desired version. This retains a
complete provenance of your software, and be compared to the
prohibition in removing pages from a lab notebook

Branches
•  Branches are parallel instances of a repository that can

be edited and version controlled in parallel, without
disturbing the master branch

•  They are useful for developing a feature, work on a bug,
try out an idea

•  If it works out, you can merge it back into the master
•  if it doesn’t, you can trash it

https://hades.github.io/2010/01/git-your-friend-not-foe-vol-2-branches/

A typical branch workflow
git branch – list current branch(es). An asterisk (*) indicates which
branch you’re currently in.

git branch test_feature - create a branch called test_feature:

git checkout test_feature – switch to the test_feature branch

Make various modifications, and then add and commit.

git checkout master - go back to the master branch

git merge test_feature – combine changes made in the
test_feature branch with the master branch

git branch –d test_feature – deletes the test_feature branch

Branches for collaboration

Ram, Karthik. “Git Can Facilitate Greater Reproducibility and Increased
Transparency in Science.” Source Code for Biology and Medicine 8, no. 1
(2013): 7. doi:10.1186/1751-0473-8-7.

•  Multiple authors can work on parallel branches, even on the same
document

•  Conflicts must be resolved manually (using human intelligence)

Resolving conflicts
Conflicts may occur when two or more people change the same content in a file
at the same time

Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the
result

The version control system does not allow people to blindly overwrite each
other’s changes. Instead, it highlights conflicts so that they can be resolved. If
you try to push while there are some changes, your push will be rejected, need
to pull first. Pull, conflicts, resolve manually.

<<<<<<< HEAD
Your current changes
=======
Conflicting changes need to be resolved
>>>>>>> dabb4c8c450e8475aee9b14b4383acc99f42af1d

GitHub

https://octodex.github.com/

Collaboration the right way
•  GitHub is a hosting service where many people store their open

(and closed) source code repositories. It provides tools for browsing,
collaborating on and documenting code.

•  Like facebook for programmers
•  Free 2-year ”micro” account for students -

https://education.github.com/ - free private repositories. Alternatively
- Bitbucket, GitLab, gitolite

•  Exercise: Create a GitHub account, https://github.com/

Why use GitHub
True open source

Graphical user interface for git
•  Exploring code and its history
•  Tracking issues

Facilitates
•  Learning from others
•  Seeing what people are up to
•  Contributing to others’ code

Lowers the barrier to collaboration
•  ”There’s a typo in your documentation.” vs.”Here’s a

correction for your documentation.”

Remotes in GitHub
A local Git repository can be connected to one or more
remote repositorie
git remote add origin https://github.com/
username/reponame
Check your work git remote -v

Use the https:// protocol (not git@github.com) to
connect to remote repositories until you have learned how
to set up SSH

git push origin master - copies changes from a
local repository to a remote repository

git pull origin master - copies changes from a
remote repository to a local repository

Asynchronous Collaborating
•  someone’s repository on GitHub – this is now YOUR copy
•  git clone it on your computer
•  Make changes, git add, git commit
•  git push changes to your copy
•  Create on GitHub

Keeping in sync with the owner’s repo
Add a connection to the original owner’s repository
git remote add upstream https://github.com/
username/reponame # upstream - alias to other repo

git remote –v - check what you have

git pull upstream master – pull changes from the owner’s
repo

Make changes, git add, git commit

git push – push your changes to GitHub.

Question: Where will they go? Can you do git push upstream
master?

Create pull request
Go to your version of the repository on GitHub

Click the button at the top

Note that the owner’s repository will be on the left and your repository
will be on the right

Click the button. Give a succinct and informative
title, in the comment field give a short explanation of the changes and
click the green button “Create pull request” again

What others see/do with pull
requests

The owner goes to his version of the repository. Clicks on
 at the top. A list of pull requests made to his repo

comes up

Click on the particular request. The owner can see other’s
comments on the pull request, and can click to see the exact
changes

If the owner wants someone to make further changes before
merging, he add a comment

If the owner hates the idea, he just click the “Close” button

If the owner loves the idea, he clicks the “Merge pull request”

Track and resolve issues
•  Issues keep track of tasks, enhancements, and bugs for your

projects
•  They can be shared and discussed with the rest of your team
•  Written in Markdown, can refer to @collaborator, #other_issue

•  Can use commit messages to fix issues, e.g., “Add missing tab,
fix #100”. Use any keyword, “Fixes”, “Fixed”, “Fix”, “Closes”,
“Closed”, or “Close”

Rstudio and GitHub
RStudio has built-in facilities for git and GitHub. Set up git in Tools/
Global Options

Your Rstudio project can be your
git repository

•  Create a project with checkbox

“Create a git repository”
checked

•  Add existing project to version
control by selecting git in Tools/
Version control/Project setup

Rstudio and GitHub
Basic commands are available
•  See which files are untracked, modified, stage
•  What branch you are in
•  Add files, commit, push/pull
•  See differences, history
•  Revert changes, ignore files
•  For heavy lifting git, use shell

Big data analysis the right way

https://aws.amazon.com/blogs/aws/building-bridges-for-better-cancer-treatment-with-the-fred-hutchinson-cancer-research-center/

SEAMLESS INTERACTION
WITH GITHUB

password-less login to any
SSH connection

Encryption concepts

https://wogan.me/tag/public-key-encryption/

Public and private keys
•  Both public and private keys are generated by one individual – they are

yours
•  A public key is a “lock” that can be opened with the corresponding private

key
•  Public key can be placed on any other computer you want to connect to
•  Private key stays private on any machine you’ll be connecting from
•  Only your private key can “open” your public key

Getting public and private keys
Generate your public and private keys
•  First, check if you already have them, ls -al ~/.ssh
•  If not, generate
ssh-keygen -t rsa -b 4096 -C your_email@example.com

~/.ssh/id_rsa ~/.ssh/id_rsa.pub

~/.ssh/authorized_keys

Add public key to GitHub

https://help.github.com/articles/generating-an-ssh-key/
https://www.cs.utah.edu/~bigler/code/sshkeys.html

Add your public key to your GitHub account
•  Go to your GitHub Account Settings
•  Click “SSH and GPG keys” on the left.
•  Click “New SSH Key” on the right.
•  Add a label (like “My laptop”) and paste your public key into the text box.
•  Test it, ssh -T git@github.com. You should see something like “Hi

username! You've successfully authenticated but Github does not provide
shell access.”

Add public key to any machine
•  Copy your public key ~/.ssh/id_dsa.pub to a remote

machine

•  Add the content of your public key to ~/.ssh/
authorized_keys on the remote machine

•  Make sure the .ssh/authorized_keys has the right
permissions (read+write for user, nothing for group and all)

cat ~/.ssh/id_dsa.pub | ssh user@remote.machine.com
'mkdir -p .ssh; cat >> .ssh/authorized_keys; chmod 600
authorized_keys'

http://mah.everybody.org/docs/ssh

Your private key should be visible to your terminal session
•  Start SSH agent
•  Add auto-start function in your ~/.bashrc

Start ssh-agent
 SSH_ENV=$HOME/.ssh/environment
 function start_agent {
 echo "Initializing new SSH agent..."
 # spawn ssh-agent
 /usr/bin/ssh-agent | sed 's/^echo/#echo/' > "${SSH_ENV}"
 echo succeeded
 chmod 600 "${SSH_ENV}"
 . "${SSH_ENV}" > /dev/null
 /usr/bin/ssh-add
 }

 if [-f "${SSH_ENV}"]; then
 . "${SSH_ENV}" > /dev/null
 ps -ef | grep ${SSH_AGENT_PID} | grep ssh-agent$ > /dev/null || {
 start_agent;
 }
 else
 start_agent;
 fi

Password-less login

http://mah.everybody.org/docs/ssh
https://gist.github.com/rezlam/850855

Copy files over ssh

•  scp <file>
user@remote.host.com:~/work/

•  rsync –arvh –progress <file>
user@remote.host.com:~/work/

