The Posver of GNU Make for
Hretiding Anything

Managing
Projects with

AKC

O’RE“.LY. Rodwrs Wockderbury

'._ http://shop.oreiIIy.com/producﬂ97805960061 05.do

GNU make

GNU Make is a tool which controls the workflow of generating
target/result files from the dependencies (source files).
Target/result files may be text files, standalone programs,
packages

Capabilities of Make

Make is for more than just a tool for compiling software
The path from raw data to final results

Automates/documents a workflow

Intelligently handles the dependencies among data files, code
Accounts for the updates in data, code

Re-runs only the necessary code, based on what has changed

https://www.gnu.org/software/make/

Makefile structure

Makefile contains recipes in the form of:
target: dependencies

<code>

— target the outcome
— dependencies the necessary parts to build the outcome

— code outlines the rules to build target using
dependencies

 All commands must be tab-indented

« Dependencies, if more than one, must be space-separated

Makefile example

An example of obtaining counts and types of the cytobands
all: cytoband_counts.txt cytoband_types.txt

Download the raw data
cytoBand.txt.gz:
wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/$@

Obtain counts of the cytobands
cytoband_counts.txt: cytoBand.txt.gz

zcat < $< | cut -f1 | sort | uniq -c | awk '{OFS="\t"} {print $$2,$$1}' | sort -
k2 -nr > $@

Obtain types of the cytobands
cytoband_types.txt: cytoBand.txt.gz

zcat < $< | cut -f5 | sort | uniq -c | awk '{OFS="\t"} {print $$2,$$1}' | sort -
k2 -nr > $@

clean:
rm *.gz

Makefile structure

Typical recipes

* clean - commands to clean up the working
directory from temporary files

* test - runs a series of tests
« install - installs a software
— ./configure
—make

—make install

LN
DEMO
\...J

How to use make

 |f you name your make file Makefile, then just go into the
directory containing that file and type make

* |f you name your make file something.else, then type
make -f something.else

« By default, make builds the first target listed in the Makefile.
Generally, the first target generates all other targets
all: targetl target2 target3

« To build a specific target, type make target. For example,
make cytoband counts. txt

Make variables

* Avariable is a name defined in a makefile to represent a
string of text, called the variable’s value. Variables are used
to simplify recipes

« Defining internal Makefile variable
DB = “/home/genomerunner/db 2.00 06.10.2014"

« Using a variable
${DB} or $ (DB)

P
DEMO

https://www.gnu.org/software/make/manual/make.html#Using-Variables

Using shell variables in Make

Shell variables, e.g. $HOME, need to be prefixed by $

awk ‘{print $0}’ within shell variable use
awk ‘{print $$0}’ within Makefile variable use

Capturing output of shell commands into a variable:

TXT FILES = $$(shell find . -type f —-name “*.txt”)

TIP!

 The content of a Makefile runs in its own shell environment. The default
shell environment is /bin/sh. To set shell environment to bash, use

SHELL=/bin/bash

Why bother?
* Variable $SECONDS exists in bash, but not in sh
_+ Other syntax incompatibilities, e.g., if-else-£fi syntax

Automatic variables

Makefile contains recipes in the form of:
target: dependencies

<code>
$@ the name of the target of the rule
$< the name of the first dependency
$? the names of all the dependencies

$ (<F) the file part of the first dependency

Example:
COMPILER = g++ # Define compiler
COMPILER FLAGS=-c -Wall # Define flags

hello.o: hello.c hello.h # Recipe
S (COMPILER) $(COMPILER;FLAGS) $< -o $a

https://www.gnu.org/software/make/manual/make.html#Automatic-Variables

Patterns

A pattern rule allows “wildcard” matching between the target and the
dependencies. The ‘%’ wildcard is similar to the ‘*’ wildcard in bash

« Existing files:
— moduleO induction.Rmd
- modulel basics.Rmd
— module2 managingR.Rmd

« Makefile recipe:
5.html: %.Rmd
echo $(@)

./compile slides $(basename $(@))
* Results:

— module0 induction.html
— modulel;basics.html
- module2 managingR.html

https://www.gnu.org/software/make/manual/make.html#Pattern-Rules

Canned recipes (functions)

Prefix for the ' snps.bed’ and ‘' bkg.bed’ file names
INP = chr22

Path to the genomic background background

BKG = background/snpl38.bed.gz "= sSnpl38.bed.gz
chr22_bkg.bed

Types of analyses to run chr22_snps.bed

ANl = chromStates gf chromStates.txt

AN2 = tfbsEncode gf_tfbsEncode.txt

Variable/function to execute the $Q@ analysis

define hypergeomé

python -m grsnp.hypergeom4 --output dir $@ $(INP) snps.bed gf $Q@.txt $
(INP) bkg.bed

endef
all: .$ (AN1) .$(AN2)
.$(AN1) : $ (INP)

$ (hypergeomd)
.$ (AN2) : $ (INP)

$ (hypergeomd)

https://www.gnu.org/software/make/manual/make.html#Canned-Recipes

