
http://shop.oreilly.com/product/9780596006105.do

GNU make

GNU Make is a tool which controls the workflow of generating
target/result files from the dependencies (source files).
Target/result files may be text files, standalone programs,
packages

Capabilities of Make
•  Make is for more than just a tool for compiling software
•  The path from raw data to final results
•  Automates/documents a workflow
•  Intelligently handles the dependencies among data files, code
•  Accounts for the updates in data, code
•  Re-runs only the necessary code, based on what has changed

https://www.gnu.org/software/make/

Makefile structure
Makefile contains recipes in the form of:
target: dependencies

 <code>

–  target the outcome

–  dependencies the necessary parts to build the outcome

–  code outlines the rules to build target using
dependencies

•  All commands must be tab-indented

•  Dependencies, if more than one, must be space-separated

Makefile example
An example of obtaining counts and types of the cytobands
all: cytoband_counts.txt cytoband_types.txt

Download the raw data
cytoBand.txt.gz:

 wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/$@

Obtain counts of the cytobands
cytoband_counts.txt: cytoBand.txt.gz

 zcat < $< | cut -f1 | sort | uniq -c | awk '{OFS="\t"} {print $$2,$$1}' | sort -
k2 -nr > $@

Obtain types of the cytobands
cytoband_types.txt: cytoBand.txt.gz

 zcat < $< | cut -f5 | sort | uniq -c | awk '{OFS="\t"} {print $$2,$$1}' | sort -
k2 -nr > $@

clean:

 rm *.gz

Makefile structure

Typical recipes
•  clean – commands to clean up the working

directory from temporary files

•  test – runs a series of tests

•  install – installs a software

– ./configure
– make
– make install

How to use make

•  If you name your make file Makefile, then just go into the
directory containing that file and type make

•  If you name your make file something.else, then type
make -f something.else

•  By default, make builds the first target listed in the Makefile.
Generally, the first target generates all other targets

all: target1 target2 target3

•  To build a specific target, type make target. For example,
make cytoband_counts.txt

Make variables
•  A variable is a name defined in a makefile to represent a

string of text, called the variable’s value. Variables are used
to simplify recipes

•  Defining internal Makefile variable
DB = “/home/genomerunner/db_2.00_06.10.2014”

•  Using a variable
${DB} or $(DB)

https://www.gnu.org/software/make/manual/make.html#Using-Variables

Using shell variables in Make
Shell variables, e.g. $HOME, need to be prefixed by $

awk ‘{print $0}’ within shell variable use
awk ‘{print $$0}’ within Makefile variable use

Capturing output of shell commands into a variable:

TXT_FILES = $$(shell find . –type f –name “*.txt”)

TIP!
•  The content of a Makefile runs in its own shell environment. The default

shell environment is /bin/sh. To set shell environment to bash, use
SHELL=/bin/bash

Why bother?
•  Variable $SECONDS exists in bash, but not in sh
•  Other syntax incompatibilities, e.g., if-else-fi syntax

Automatic variables
Makefile contains recipes in the form of:
target: dependencies
 <code>

$@ the name of the target of the rule
$< the name of the first dependency
$? the names of all the dependencies
$(<F) the file part of the first dependency

Example:

COMPILER = g++ # Define compiler
COMPILER_FLAGS=-c –Wall # Define flags

hello.o: hello.c hello.h # Recipe
 $(COMPILER) $(COMPILER_FLAGS) $< -o $@

 https://www.gnu.org/software/make/manual/make.html#Automatic-Variables

Patterns

https://www.gnu.org/software/make/manual/make.html#Pattern-Rules

A pattern rule allows “wildcard” matching between the target and the
dependencies. The ‘%’ wildcard is similar to the ‘*’ wildcard in bash

•  Existing files:

-  module0_induction.Rmd
-  module1_basics.Rmd
-  module2_managingR.Rmd

•  Makefile recipe:

%.html: %.Rmd
 echo $(@)
 ./compile_slides $(basename $(@))

•  Results:
-  module0_induction.html
-  module1_basics.html
-  module2_managingR.html

Canned recipes (functions)
Prefix for the ‘_snps.bed’ and ‘_bkg.bed’ file names
INP = chr22

Path to the genomic background
BKG = background/snp138.bed.gz

Types of analyses to run
AN1 = chromStates
AN2 = tfbsEncode

Variable/function to execute the $@ analysis
define hypergeom4
python -m grsnp.hypergeom4 --output_dir $@ $(INP)_snps.bed gf_$@.txt $
(INP)_bkg.bed
endef

all: .$(AN1) .$(AN2)

.$(AN1): $(INP)

 $(hypergeom4)

.$(AN2): $(INP)

 $(hypergeom4)
https://www.gnu.org/software/make/manual/make.html#Canned-Recipes

