
BEST PRACTICES OF DATA/
CODE ORGANIZATION

Automating everything

•  Little automation is better than no automation
•  It's more work to do things properly, but it could

save you a ton of aggravation down the road

What to automate?
•  what you're trying to do
•  what you're thinking about
•  what you're seeing
•  what you're concluding and why

Good vs. bad programming

“Any fool can write code that a computer can
understand”
“Good programmers write code that humans
can understand”

-Martin Fowler, 2008

Bad programmer explains him/herself with
comments, good programmer explains him/
herself with code

https://en.wikiquote.org/wiki/Martin_Fowler

Good code = Clean code
•  Follow coding conventions

–  PEP-8 for Python, PSR-2 for PHP, google
“<language_name> coding conventions” for more

–  Google's R Style Guide, R style guide by Hadley
Wickham

•  Clean code is
–  Understandable at first glance
–  Neat and elegant
–  Unambigious
–  Not necesserily computationally efficient
–  Self-explanatory
–  Maintainable http://www.cbs.dtu.dk/courses/27610/clean_code_index.html#clean-code-and-refactoring

https://www.python.org/dev/peps/pep-0008/
http://www.php-fig.org/psr/psr-2/

https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html

Bad code

•  Full of “magic” – variables/values noone
can understand

•  Cluttered, or too loose
•  Redundant
•  Poorly commented
•  Does not follow conventions
•  Hardly maintainable

Code represents you – don’t write a bad code

Good vs. Bad code
BAD

GOOD

Good variable names
Variable names – nouns
•  informative
•  unambigious
•  descriptive
•  choose and follow conventions

–  underscore_convention
–  camelCaseConvention
–  dot.convention

•  variables are in lower case, constants are in UPPER case

BAD

GOOD

Good function names

•  Function names – verbs
–  “verb first” rule, e.g., print_full_name
–  informative, unambigious, descriptive, etc., as

for variables

Question: good or bad?
BAD

GOOD

Principles of good code
development

DRY
•  Don't Repeat Yourself
•  Do everything to avoid

code repetition!

WET
•  Write Everything (more

than) Twice
•  The first time you write a

code, you are writing it for
the solution, second for
comprehension, third for
efficiency and last for
your sake

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

KISS - Keep It Small and Simple. Simplicity over complicity,
shorter over longer

Refactoring
Refactoring – making better code

•  Make code understandable by other developers.
Here we ask ourselves a question; If I would give the
code to my grandma, would she understand it?

•  Increase readability of the code = reduce cluttering of
the code. Make code loose in tight places and tight in
loose places

•  Globally search-and-replace bad variable/function
names

http://refactoring.com/

Project organization principles
•  One project = one folder

-  Create readable names for subfolders/code. E.g.
“00_raw_data”, “01_raw_data_QC” etc. [My folder structure]

-  Choose file names carefully. Don't put spaces in file names!

•  Be sure to get and keep any/all data and meta-data possible

•  Get the data in the most-raw form possible. Keep the original files,
names intact. (gzipped) CSV Text format is the most preferable.
Convert Excel files to CSV https://github.com/dilshod/xlsx2csv

•  Separate data from code. Use relative paths in code. Create multiple
README.md

Project organization principles
•  Script everything. All analysis steps, including data cleaning

(removal of outliers, correcting numbers, typos, renaming
columns etc.) should be scripted

•  Scalability and universality - ask yourself a question, if the data
are updated (e.g., additional subjects) or you find some artifact
that needs fixing, can you just “press a button” to update? If you
work on a similar project, can you reuse your existing scripts with
minimal modifications?

•  Document everything. Text format, human readable. Explicitly
tie files together. Have a plan to organize, store and make your
work understandable by others

