
TEXT MANIPULATIONS

h"p://linoxide.com/how-tos/linux-grep-command-find-strings/		

String	manipula;ons	

RegEx	is	a	language	for	describing	pa(erns	in	
strings	

•  grep		finds	lines	containing	a	pa"ern,	and	
outputs	them	

•  sed	 	(stream	editor)	applies	transforma;on	
rules	to	each	line	of	text	based	on	a	pa"ern	

•  awk	 	powerful	text	processing	language	

Regular	expressions	

h"ps://en.wikipedia.org/wiki/Regular_expression#POSIX_basic_and_extended		

. Matches	any	single	character	a.c	matches	abc, acc, etc.	

[] Matches	a	set.	[abc]	matches	a, b, or c.	[a-zA-Z] matches	any	
le"er.	[0-9]	matches	any	number.	“^”	negates	a	set,	[^abc] matches	
d, e, f, etc.		

^ Star;ng	posi;on	anchor.	^abc finds	lines	star;ng	with	abc

$ Ending	posi;on	anchor.	xyz$	finds	lines	ending	with	xyz

\ Escape	symbol,	to	find	special	characters.	*	will	find	“*”.	\n matches	
new	line	character,	\t –	tab	character	

* Match	the	preceding	element	zero	or	more	;mes.	a*b	matches	ab,
aab, aaab, etc.	

Extended	regular	expressions	

? Matches	the	preceding	element	zero	or	one	;me.	a*b	matches	b, ab,	
but	not	aab

+ Matches	the	preceding	element	one	or	more	;mes.	a+b matches	ab,
aab, etc.	

| OR	operator.	“abc|def”	matches	abc	or	def

grep	usage	

Basic	syntax:	grep ”pattern" <filename>

•  cat README.md | grep "use"
outputs	lines	containing	the	pa"ern	”use”,		
non-case-sensi;ve,	prints	line	numbers	

•  ls | grep "^[w|b]"
lists	files/directorys	star;ng	with	”w”	or	”b”	

Fine-tuning	your	grep	

-v inverts	the	match	

-i matches	case	insensi;vely	

-H prints	the	matched	filename	

-n prints	the	line	number	

-f <filename> gets	pa"erns	from	a	file,		
each	pa"ern	on	a	new	line	

-w forces	the	pa"ern	to	match	an	en;re	word	

-x forces	pa"erns	to	match	the	whole	line	

h"p://shop.oreilly.com/product/9780596003524.do		

sed	-	stream	editor	
Most	common	usage	–	subs4tute	a	pa"ern	with	replacement.	Basic	
syntax:			
sed ‘s/pattern/replacement/’

•  echo “The Internet is made of dogs” | sed ‘s/
dogs/cats/’
replaces	“dogs”	with	cats,	so	the	final	output	is	“The	Internet	is	
made	of	cats”	

•  echo “dogs, dogs, dogs” | sed ‘s/dogs/cats/g’		
global	subs;tu;on	with	“g”	modifier.	The	final	output	is	“cats,	
cats,	cats”	

h"ps://en.wikipedia.org/wiki/Cats_and_the_Internet		

sed	-	stream	editor	
•  Special	characters	–	escape	with	“\”	

echo "1*2*3" | sed 's/*/-/g’ outputs	“1-2-3”	

•  Regular	expressions	–	use	as	in	grep,	with	“-E”	argument	for	
extended	regex	

echo "tic-tac-toe" | sed 's/[ia]/o/g' | sed 's/e
$/c/’ - outputs	“toc-toc-toc”	
	

•  Delete	line(s)	–	sed ‘X[,Y]d’	deletes	line	X	through	Y	
cat <filename> | sed ‘1d’ - deletes	first	line	(e.g.,	
header)	

cat <filename> | sed ‘10,37d’ - deletes	lines	from	10	
through	37		

awk	

A	more	tradi;onal	programming	language	for	text	
processing	than	sed.	Awk	stands	for	the	names	of	
its	authors	“Alfred	Aho,	Peter	Weinberger,	and	
Brian	Kernighan”	
	
•  Operates	on	“pieces”	of	a	line	=	columns.	A	piece	
is	defined	as	separated	by	space,	tab,	or	pre-
specified	symbol	(e.g.,	comma)	

•  Columns	are	enumerated,	and	can	be	addressed	
as	$1, $2, $3 ….
$0	represents	the	whole	line	

Condi;onal	output	with	awk	

Basic	syntax:	cat <filename> | awk ‘expression
{ action }’

–  if (expression) {action} [else {action}]
–  Boolean	operators	==, !=, >, >=, <, <=, &&, ||

	
•  Print	a	line	if	the	first	column	is	“chr1”	
awk '{if ($1 == "chr1”) print $0}’
awk '$1 == "chr1" {print $0}’
	
•  Print		columns	2	and	3,	switched,	if	the	1st	column	is	>	

100	
awk ‘{OFS=“\t”} $1 > 100 {print $3, $2}’
OFS	–	output	field	separator,	“space”	by	default	

awk	goodies	
•  Arithme;cs	

awk ‘{print $1, $2+100, $3-100}’ prints	first	3	
columns,	the	2nd	numerical	column	is	increased	by	100,	the	3rd	is	
decreased	by	100	

	

•  Number	of	columns	

head <filename> | awk ‘{FS=“\t”} {print NF}’
using	tab	as	a	field	separator,	prints	number	of	fields	

	

•  Sort	files	by	the	number	of	lines	

wc -l *.bed | awk '{OFS="\t"} {print $2, $1}' |
sort -k2n

man awk for	more	 h"p://www.pement.org/awk/awk1line.txt		

Sta;s;cal	command	line	goodies	

•  data_hacks,	h"ps://github.com/bitly/data_hacks	
–  Command	line	tools	for	data	analysis	

–  histogram.py
–  bar_chart.py
–  sample.py

•  datamash,	h"ps://www.gnu.org/sofware/datamash/	
–  summary	sta;s;cs	

–  transposing	matrixes	

KNOW YOUR TEXT EDITOR

Know	your	text	editor	

nano – default text editor of GNU operating systems

Vi,	Vim,	Emacs	

Emacs	basics	
•  Created	by	Richard	Stallman,	1976	

•  Advantages:	Unparalleled		
power	and	configura;on	

Vi(m)	Basics	
•  Created	by	Bill	Joy,	1976	

•  Advantages:	Supremely	intui;ve	
once	basics	are	learned	

h"ps://danielmiessler.com/blog/differences-vi-vim-emacs/		

h"ps://en.wikipedia.org/wiki/Emacs		h"ps://en.wikipedia.org/wiki/Vi		

vim	basics	

Start	vim	on	a	file:	vim <filename>
	
Two	modes:	
•  i editor	mode,	to	type	
•  Esc	 	 	command	mode.	Press	“:”	and	enter	a	
command	

	
Commands:	
•  :w 	 	write	changes	
•  :wq 	write	changes	and	quit	
•  :q! 	force	quit	and	ignore	changes	

Basic	vim	commands	

k, j, l, h,	or	arrows	 	naviga;on	
	
v	 	 	 	 	 	 	 	(visually)	select	characters	
V (shift-v) (visually)	select	whole	lines	
d	 	 	 	 	 	 	 	cut	(delete)	into	clipboard	
dd	 	 	 	 	 	 	cut	the	whole	line	
y	 	 	 	 	 	 	 	copy	(yank)	into	clipboard	
P (shift-p) 	paste	from	clipboard	
u	 	 	 	 	 	 	 	undo	
	
	

Find	and	replace	in	vim	

In	command	mode:	

•  /pattern	 	 	 	search	for	pa"ern,	“n”	–	
next	instance	

•  :s/pattern/replacement/g 	search	
and	replace	

•  :help tutor		 	learn	more	vim	

