TEXT MANIPULATIONS

|
grep
THEREFORE. 1 A!
J | |

http://linoxide.com/how-tos/linux-grep-command-find-strings

String manipulations

RegEx is a language for describing patterns in
strings

* grep finds lines containing a pattern, and
outputs them

e sed (stream editor) applies transformation
rules to each line of text based on a pattern

e awk powerful text processing language

Regular expressions

Matches any single character a.c matches abc, acc, etc.

[] Matches a set. [abc] matchesa, b, or c. [a-zA-Z] matches any
letter. [0-9] matches any number. “*” negates a set, [*abc] matches
d, e, £, etc

A Starting position anchor. “abe finds lines starting with abec
S Ending position anchor. xyz$ finds lines ending with xyz
\ Escape symbol, to find special characters. \ * will find “*”. \n matches

new line character, \t - tab character

* Match the preceding element zero or more times. a*b matches ab,
aab, aaab, etc.

Extended regular expressions

? Matches the preceding element zero or one time. a*b matchesb, ab,
but not aab

+ Matches the preceding element one or more times. a+b matches ab,
aab, etc.

| OR operator. “abec |def” matches abc or def

https://en.wikipedia.org/wiki/Regular_expression#POSIX basic_and extended

grep usage

Basic syntax: grep “pattern" <filename>

* cat README.md | grep ''use"
outputs lines containing the pattern “use”,
non-case-sensitive, prints line numbers

* 1ls | grep "*[w|b]"
lists files/directorys starting with “w” or ”b”

oo
DEMO
&

Fine-tuning your grep

-v inverts the match

-i matches case insensitively
-H prints the matched filename
-n prints the line number

-f <filename> gets patterns from a file,
each pattern on a new line

-w forces the pattern to match an entire word
-x forces patterns to match the whole line

Text Processing
with Regular Expressions

Pocket Reference

O’ RE I LLY ‘ Arncld Robbins

http:

shop.oreilly.com/product/9780596003524.do

sed - stream editor

Most common usage — substitute a pattern with replacement. Basic
syntax:
sed ‘s/pattern/replacement/’

echo “The Internet is made of dogs” | sed ‘s/
dogs/cats/’

replaces “dogs” with cats, so the final output is “The Internet is
made of cats”

echo “dogs, dogs, dogs” | sed ‘s/dogs/cats/g’

global substitution with “g” modifier. The final output is “cats,
cats, cats”

https://en.wikipedia.org/wiki/Cats and the Internet

|\

sed - stream editor

* Special characters — escape with “\”
echo "1*2*3" | sed 's/*/-/g’ outputs “1-2-3”

* Regular expressions — use as in grep, with “-E” argument for
extended regex

echo "tic-tac-toe" | sed 's/[ia]l/o/g' | sed 's/e
$/c/’ - outputs “toc-toc-toc”

 Deleteline(s) —sed ‘X[,Y]d’ deletesline X throughY

cat <filename> | sed ‘1d’ - deletes firstline (e.g.,
header)

cat <filename> | sed ‘'10,37d’ - deleteslinesfrom 10

through 37
—)

awk

A more traditional programming language for text
processing than sed. Awk stands for the names of
its authors “Alfred Aho, Peter Weinberger, and
Brian Kernighan”

* Operates on “pieces” of a line = columns. A piece
is defined as separated by space, tab, or pre-
specified symbol (e.g., comma)

* Columns are enumerated, and can be addressed
as 81, $2, $3 ...
SO represents the whole line

Conditional output with awk

Basic syntax: cat <filename> | awk ‘expression
{ action }’
— if (expression) {action} [else {action}]
— Boolean operators==, '=, >, >=, <, <=, &&, ||

e Printaline if the first column is “chrl”
awk '{if (S$1 == "chrl”) print $0}’
awk 'Sl == "chrl" {print $0}’

* Print columns 2 and 3, switched, if the 15t column is >
100

awk ‘{OFS="“\t”} $1 > 100 {print $3, $2}'
OFS — output field separator, “space” by default

awk goodies

e Arithmetics

awk ‘{print $1, $2+100, $3-100}’ printsfirst3
columns, the 2"4 nhumerical column is increased by 100, the 3 is
decreased by 100

e Number of columns

head <filename> | awk ‘{FS=“\t”} {print NF}’
using tab as a field separator, prints number of fields

 Sort files by the number of lines

wec -1 * bed | awk '{OFS="\t"} {print $2, $1}' |
sort -k2n

L
7 Mman aWk for more http://www.pement.org/awk/awk1line.txt

Statistical command line goodies

» data_hacks, https://github.com/bitly/data hacks
— Command line tools for data analysis

— histogram.py
— bar chart.py
— sample.py

 datamash, https://www.gnu.org/software/datamash/

— summary statistics

— transposing matrixes

KNOW YOUR TEXT EDITOR

Know your text editor

nano — default text editor of GNU operating systems

Hesssnee
Alisses
P 3223222

export LC_CTYPE=C
export LANG=(

slias lah="'1ls ~lah’
alias ..»'cd '
sliss ...="cd

alias»'cd
slias='¢cd
alias ‘cd

slias 'cd

-
5=

#4 get top process eating mesory
alias psmem='ps auxf | sort -ar
alins pseemlO="ps auxf | sort -ar -k | head -19°

get top process eating cpu M
alias pscpu='ps auxf | sort -ar -k 3°'
alias pscpul@='ps auxf | sort -ar -k 3 | head -10°'

Find space hogs in the current directory
- g

g, WriteOut 2! Read File Prev Page i; Cut Text 4 Cur Pos
Justaify . Where Is Next Page g, UnCut Text : To Spell

Vi, Vim, Emacs

Vi(m) Basics Emacs basics

* Created by Bill Joy, 1976 * Created by Richard Stallman, 1976

* Advantages: Supremely intuitive Advantages: Unparalleled
once basics are learned power and configuration

vimscript is abysmal hyper-configurable

. . youu live in it
useful For occasional edits y

Installed more places steep learning curve hyper-extendable

ntuitive commands powerful once learned lisp is beautiful
casier to learn massnve
more intuitive slower

oure editor more than an edRor

more like a shell or os

https://en.wikipedia.org/wiki/Vi

https://en.wikipedia.org/wiki/Emacs

https://danielmiessler.com/blog/differences-vi-vim-emacs/

vim basics

Start vim on a file: vim <filename>

Two modes:
e i editor mode, to type

e Esc command mode. Press “:” and enter a
command

Commands:
* W write changes
* :wqg write changes and quit
° :q! force quit and ignore changes

oo
DEMO
&

Basic vim commands

k, jJ, 1, h,orarrows navigation

v
V (shift-v)
d

dd

Y

P (shift-p)
u

(visually) select characters
(visually) select whole lines
cut (delete) into clipboard
cut the whole line

copy (yank) into clipboard
paste from clipboard

undo

Find and replace in vim

In command mode:

o7

 /pattern search for pattern, “n” —
next instance

 :s/pattern/replacement/qg search
and replace

* :help tutor Ilearn morevim

