
KNOW YOUR UNIX

Know your Unix

•  Unix is a family of operating systems and
environments that exploits the power of linguistic
abstractions to perform tasks

•  Unix users spend a lot of time at the command line

•  In Unix, a word is worth a thousand mouse clicks

Getting to the command line

•  Remote access, SSH, PuTTY.

•  Mac OS X + Xcode development suite (free) + X11 server (free) +
iTerm2 (optional)

•  Ubuntu Linux (long-term support LTS version, XX.04)

•  Windows users
•  Cygwin, http://www.cygwin.com/
•  Git Bash, https://git-for-windows.github.io/
•  Boot from a CD or USB
•  Install the whole Linux systems

as a Virtual Machine in VirtualBox

http://www.chiark.greenend.org.uk/~sgtatham/putty/
https://developer.apple.com/xcode/

https://www.xquartz.org/
https://iterm2.com/

http://www.ubuntu.com/download/desktop
https://www.virtualbox.org/

Obtaining new software
Modern Unixes have package managers to that download
install (free) software for you

•  On a Mac, MacPorts is a popular package-management

system, and Homebrew is gaining in popularity

•  On Ubuntu, apt is the standard package manager, with
both a command-line and graphical interface available

•  On Windows, Cygwin installs everything precompiled
through its setup file. Do not delete setup-
x86_64.exe file after installing Cygwin, explore what
Linux tools are available (a lot) https://www.macports.org/

http://brew.sh/
https://en.wikipedia.org/wiki/Advanced_Packaging_Tool

https://cygwin.com/install.html

What is shell
•  Shell is an interactive environment with a set of

commands to initiate and direct computations

•  Shell encloses the complexity of OS, hence the name
–  You type in commands
–  Shell executes them

https://en.wikipedia.org/wiki/Unix_shell

Most popular types of shell
•  bash Bourne-Again shell
•  tcsh TENEX C shell
•  zsh Z shell
•  Change shell - chsh –s /bin/zsh

https://en.wikipedia.org/wiki/Unix_shell

Exercise:
•  Check which shell you are using – echo $SHELL

Interacting with shell

•  Most commands take additional arguments that fine tune
their behavior

•  If you don't know what a command does, use the
command man <command>.

•  Some tools use an alternate documentation system
called info

•  Press q to quit the man page viewer

•  Most often, you’ll use <command> -h or <command>
--help

File system: Full vs. relative paths

cd / go to the root directory
cd /usr/home/jack/bin go to the user’s sub-directory
cd .. go to the upper level directory
cd, or cd ~ go to the user’s home directory
cd -- go to the last visited directory

http://www.linuxcandy.com/2012/06/shelling-out-some-shell-scripts-part-3.html

Orienting yourself

The filesystem
•  ls list files
•  cd change directory
•  pwd print working directory

ls list all files
ls -1 list files in `one` column
ls –lah list files in long format, include special
directories, sizes in human-readable format
ls –A list all entries in the directory

Wildcards and patterns

- * matches any character
- ? matches a single character
- [chars] matches any character in chars
- [a-b] matches any caracter between a

and b

ls *.md
ls [Rt]*

Looking inside files
•  cat <file> prints out content of a file. If multiple files,

consequently prints out all of them (concatenates)
•  zcat prints out content of gzipped files

•  more/less <file> shows the content of the file one
screen at a time

Keyboard shortcuts
-  space forward
-  b backward
-  g go to the beginning
-  G go to the end
-  /<text> starts forward search, enter to find next instance
-  q quit

Creating, moving, copying, and
removing files

•  touch <file> creates an empty file

•  mkdir <dirname> creates a directory

•  cp <source_file> <target_file> copy a file to
another location/file

•  mv <source_file> <target_file> move a file

•  rm <file> remove a file. If multiple files
provided, removes all of them

•  rm –r <dirname> recursive removal (deletes a
directory)

Finding your files
find lists all files under the working directory (and its
subdirectories) based on arbitrary criteria

find . prints the name of every file or directory, recursively. Starts
from the current directory

find . –type f finds files only

find . –type d –maxdepth 1 finds directories only, at most
1 level down

find . –type f –name “*.mp3” finds only *.mp3 files

find . -type f -name "README.md" -exec wc -l {} \;
find files and execute a command on them

Permissions: chmod, chown and chgrp
In Unix, every file and directory has an owner and a group
•  Owner is the one who created a file/directory
•  Group defines rules of file operations and/or permissions
•  Every user on a Unix machine can belong to one or more groups

Every file has three permission levels
•  what the user can do
•  what the group can do
•  what the all can do

To see the owner, group and permissions associated with a file run ls –lah

Permissions: chmod, chown and chgrp
The first column tells you about the permissions on the file
•  The very first character in the permissions column tells you what kind of file it

is. A - means it's a regular file. A d means it's a directory
•  The next nine characters come in three classes, each has three characters.

The three classes are owner/group/world permissions
•  Inside a permission class, r means that class can read the file; w means that

class can write the file; x means that class can execute the file
•  If a file is a directory, x grants the permission to access inside the directory,

while r grants permission to list its contents

The third and fourth tell you the owner and group respectively

Chaining commands: pipes
One of the most useful capabilities of Unix is the ability to redirect
the STDOUT of one command into the STDIN of another

The “|” (pipe) character feeds output from the first program (to the
left of the “|”) as input to the second program on the right.
Therefore, you can string all sorts of commands together using
the pipe

-  find . | wc -l
-  cat names.txt | sort | uniq -c

Executing one command AFTER another completed successfully

-  <command> && <command>

mkdir music && mv *.mp3 music/

Chaining commands: redirections
Nearly every command in Unix makes use of a convention to have a "standard
input" (also called stdin or STDIN, or channel 0) and “standard output” (also
called stdout or STDOUT, or channel 1)

There is also a "standard error" (stderr or STDERR, or channel 2) output that is,
by convention, reserved for error messages

If you want to dump the standard output into a file, use command > file
(overwrites the file). command >> file (appends to the file)

-  find / 2> error.log capture STDERR into a file
-  find / 2> /dev/null suppress STDERR messages
-  find / 2>&1 add STDERR to STDOUT

Redirection works in another direction
-  grep CC0 < License.md
Or, the content of a commant into another command
-  join <(sort file1) <(sort file2)

Other essential commands

•  head/tail
•  for
•  sort
•  uniq
•  wc
•  tr
•  grep
•  join

•  cut
•  comm
•  echo
•  basename
•  dirname
•  history
•  which
•  who

Shell conveniences
•  Tab completion

•  Ctrl-c cancel the command you are writing

•  Ctrl-r reverse search through your command
line history

•  history shows your previous commands

•  !<history number> repeats specific command

•  !! repeats the last command

SHELL SCRIPTING

Workflow scripts

•  A script is a file with a list of shell commands executed by an
interpreter

•  Shebang (#!) defines the interpreter on the first line
-  #!/bin/bash commands interpreted by bash
-  #!/usr/bin/python interpreted by Python

Exercise: Create file hello_world.sh
 #!/bin/bash
 echo Hello World

•  Should have x permissions, chmod u+x hello_world.sh
•  Running a script
 ./hello_world.sh

Variables
•  Set a variable

– count_of_files=3
(wrong: count_of_files = 3)

– file=“/home/mdozmorov/work/README.md”

– count_of_files=$file

•  Use a variable
– echo $file

Capturing output with `backticks`
Often, one wants to capture the output of a
command as a variable

Wrap a command into “`” backticks - the
backwards apostrophes that appear on a US
English keyboard at the upper left, under the ~
(tilde)

echo `date`
CURRENT_DIR=`pwd`
file_name=`basename /bin/mkdir`

Arguments of a script as variables

> ./hello_world.sh “Hello World!”

- echo $0 prints the script name
- echo $1 prints the first argument
- echo $2 prints the second argument
- echo ${10}prints the tenth argument
- echo $# prints the number of

arguments

Internal variables
•  Set system’s parameters. Can be defined in system’s configuration

files .bashrc, .bash_profile

-  DISPLAY tells X11 on which display to open windows
-  EDITOR default text editor; usually emacs or vim
-  HOME path to user's home directory; same as ~
-  PATH path to executable programs
-  PWD current directory, same as pwd
-  SHELL path to the current shell
-  TERM current terminal type
-  USER account name of current user, same as whoami

Exercise:
•  Check the $PATH (or, pick any) variable (hint: use echo)

http://www.tldp.org/LDP/abs/html/internalvariables.html

Aliases
To avoid retyping commands - use an alias. Can be defined in system’s
configuration files .profile (Linux), .bash_profile (Mac), .bashrc

alias lah='ls -lah'
alias ..='cd ..’

get top process eating memory
alias psmem='ps auxf | sort -nr -k 4'
alias psmem10='ps auxf | sort -nr -k 4 | head -10'

get top process eating cpu
alias pscpu='ps auxf | sort -nr -k 3'
alias pscpu10='ps auxf | sort -nr -k 3 | head -10'

Find files eating space in the current directory
alias spacehogs='du -cks * | sort -rn'

Conditional execution
•  if-then-else

if [! -e $results_dir]; then
 mkdir $results_dir;

fi

•  Some popular operators for checking a condition include:

-  -e <file> TRUE if a specific file/directory exists
-  –s <file> TRUE if non-empty file
-  -z <string> TRUE if the given string is empty
-  <string1> = <string2> TRUE if the two strings are equal

help test see all operators

Loops

•  for-do-done

for file in `ls *.txt`; do
 echo $file;
 gzip $file;
done

•  while-do-done

