KNOW YOUR UNIX

Know your Unix

* Unix is a family of operating systems and
environments that exploits the power of linguistic
abstractions to perform tasks

« Unix users spend a lot of time at the command line

* |n Unix, a word is worth a thousand mouse clicks

n "-\ r-\ 2 » b‘l rl r‘

Last login: Thu May 12 09:49:43 on ttys@el
localhost:~ mikhail$ §

Getting to the command line

Remote access, SSH, PuTTY.

Mac OS X + Xcode development suite (free) + X11 server (free) +
iTerm2 (optional)

Ubuntu Linux (long-term support LTS version, XX.04)

Windows users
« Cygwin, http://www.cygwin.com/
» Git Bash, https://git-for-windows.qithub.io/
 Boot froma CD or USB
° |nSta|| the Wh0|e LInUX SyStemS http://www.chiark.greenend.org.uk/~sgtatham/putty/

https://developer.apple.com/xcode/

. . . . https://www.xquartz.org/

as a Virtual Machine in VirtualBox https://iterm2.com/
http://www.ubuntu.com/download/desktop

https://www.virtualbox.org/

Obtaining new software

Modern Unixes have package managers to that download
install (free) software for you

 On a Mac, MacPorts is a popular package-management
system, and Homebrew is gaining in popularity

* On Ubuntu, apt is the standard package manager, with
both a command-line and graphical interface available

* On Windows, Cygwin installs everything precompiled
through its setup file. Do not delete setup-
x86 64 .exe file after installing Cygwin, explore what

: . https://www.macports.org/
Linux tools are available (a lot) o brevishy
https://en.wikipedia.org/wiki/Advanced Packaging Tool

https://cygwin.com/install.html

What is shell

« Shell is an interactive environment with a set of
commands to initiate and direct computations

« Shell encloses the complexity of OS, hence the name

— You type in commands
— Shell executes them

https://en.wikipedia.org/wiki/Unix_shell

Most popular types of shell

bash Bourne-Again shell
* tcsh TENEX C shell
 zsh Z shell

 Change shell - chsh -s /bin/zsh

Exercise:
« Check which shell you are using — echo $SHELL
a N o 2. bash

Last login: Thu May 12 09:49:43 on ttys@el
localhost:~ mikhail$ §

Interacting with shell

Most commands take additional arguments that fine tune
their behavior

If you don't know what a command does, use the
command man <command>.

Some tools use an alternate documentation system
called info

Press g to quit the man page viewer

Most often, you'll use <command> -h or <command>
--help

File system: Full vs. relative paths

! {root)
etc] blﬁ use - >c'1._c-.'
bin conf ce Is awk home console kbd TAPE
perl | php Mitpd.conf jaf:.k]lll
htpd bin tmp bin tmp
a,but aout
cd / go to the root directory
cd /usr/home/jack/bin go to the user’s sub-directory
cd .. go to the upper level directory
cd, orecd ~ go to the user’s home directory
ca -- go to the last visited directory

http://www.linuxcandy.com/2012/06/shelling-out-some-shell-scripts-part-3.html

Orienting yourself

The filesystem

¢ 1s list files

* cd change directory

 pwd print working directory

ls ist all files

ls -1 ist files in "'one” column

ls -lah listfiles in long format, include special

directories, sizes in human-readable format
ls -A list all entries in the directory

oo
DEMO
&

Wildcards and patterns

— %

- ?

matches any character

matc

- [chars] matc

- [a-Db]
and b

ls *.md

ls [Rt]*

matc

nes a single character
nes any character in chars

nes any caracter between a

)

|\

/4

Looking inside files

cat <file> prints out content of a file. If multiple files,
consequently prints out all of them (concatenates)

zcat prints out content of gzipped files

more/less <file> shows the content of the file one
screen at a time

Keyboard shortcuts

space forward

b backward

g go to the beginning
G go to the end

/<text> starts forward search, enter to find next instance
q quit

Creating, moving, copying, and
removing files

touch <file> creates an empty file
mkdir <dirname> creates a directory
cp <source file> <target file> copy a file to

another location/file
mv <source file> <target file> move a file

rm <file> remove a file. If multiple files
provided, removes all of them

rm —-r <dirname> recursive removal (deletes a
directory)

Finding your files

find lists all files under the working directory (and its
subdirectories) based on arbitrary criteria

find . prints the name of every file or directory, recursively. Starts
from the current directory

find . -type £ finds files only

find . -type d -maxdepth 1 finds directories only, at most
1 level down

find . -type £ —-name “* . mp3” finds only *.mp3 files

find . -type £ -name "README.md" -exec wc -1 {} \;

find files and execute a command on them

Permissions: chmod, chown and chgrp

o1
total

drwars-

drwar-xr-x
- W= ==

wost: BI050
58

In Unix, every file and directory has an owner and a group

« Owner isthe one who created a file/directory

« Group defines rules of file operations and/or permissions

« Every useron a Unix machine can belong to one or more groups

Every file has three permission levels
« what the user can do

« what the group can do

« what the all can do

To see the owner, group and permissions associated with a file run 1s -1lah

¥4 mikhaarls

aAD 2]

- . »

-
|

Kk
k
1
ikh
Lk
kb

khe
k
k>
kb
k>
i ki
kb
)

P s pa.

Permissions: chmod, chown and chgrp

The first column tells you about the permissions on the file

The very first character in the permissions column tells you what kind of file it
is. A - means it's a regular file. A d means it's a directory

The next nine characters come in three classes, each has three characters.
The three classes are owner/group/world permissions

Inside a permission class, r means that class can read the file; w means that
class can write the file; x means that class can execute the file

If a file is a directory, x grants the permission to access inside the directory,
while r grants permission to list its contents

The third and fourth tell you the owner and group respectively

SCAaLnNas st AV
total &8
GrwaAr=xXr«x]
drwar-xr-x
-rwW=r==r—@

194 maikhaeirls b =L

P

-5

-
|

Kk
ki
ikh
ikh
Lk
ikh
k)
k
k>
k.
kh
kb
kb
)

ol el -

Chaining commands: pipes

One of the most useful capabilities of Unix is the ability to redirect
the STDOUT of one command into the STDIN of another

The “|” (pipe) character feeds output from the first program (to the
left of the “|”) as input to the second program on the right.

Therefore, you can string all sorts of commands together using
the pipe

— find . | we -1
- cat names.txt | sort | uniq -c

Executing one command AFTER another completed successfully

- <command> && <command>
mkdir music && mv * mp3 music/
ey,

Chaining commands: redirections

Nearly every command in Unix makes use of a convention to have a "standard
input” (also called stdin or STDIN, or channel 0) and “standard output” (also
called stdout or STDOUT, or channel 1)

There is also a "standard error” (stderr or STDERR, or channel 2) output that is,
by convention, reserved for error messages

If you want to dump the standard output into a file, use command > file
(overwrites the file). command >> file (appends to the file)

- find / 2> error.log capture STDERR into a file
- find / 2> /dev/null suppress STDERR messages
- find / 2>&1 add STDERR to STDOUT

Redirection works in another direction

- grep CCO < License.md

Or, the content of a commant into another command
— join <(sort filel) <(sort file2)

Other essential commands

head/tail e cut

for * comm

sort ° echo

uniq e basename

wC

tr

grep
Jjoin

* dirname
* history
e which

* who

(5

Shell conveniences

Tab completion

Ctrl-c cancel the command you are writing
Ctrl-r reverse search through your command
line history

history shows your previous commands

<history number> repeats specific command

" repeats the last command

SHELL SCRIPTING

Workflow scripts

« Ascriptis a file with a list of shell commands executed by an

Interpreter
« Shebang (#') defines the interpreter on the first line
- #!'/bin/bash commands interpreted by bash

- #!'/usr/bin/python interpreted by Python

Exercise: Create file hello world.sh
#!/bin/bash
echo Hello World

« Should have x permissions, chmod u+x hello world.sh
* Running a script

o\

&ﬂg ./hello world.sh

Variables

 Set a variable
—count of files=3
(wrong: count of files = 3)
— file="“/home/mdozmorov/work/README . md"”

— count_of_files=$file

e Use a variable

— echo §$file
it

Capturing output with "backticks

Often, one wants to capture the output of a
command as a variable

Wrap a command into “* backticks - the
backwards apostrophes that appear on a US
English keyboard at the upper left, under the ~
(tilde)

echo date’
CURRENT DIR=pwd'
file name="basename /bin/mkdir"

Arguments of a script as variables

> ./hello world.sh “Hello World!”

- echo $0 prints the script name

- echo $1 prints the first argument

- echo $2 prints the second argument
— echo ${10}prints the tenth argument

- echo $# prints the number of
arguments

oo
DEMO
&

Internal variables

« Set system’s parameters. Can be defined in system’s configuration
files .bashrc, .bash profile

- DISPLAY tells X11 on which display to open windows

- EDITOR default text editor; usually emacs or vim

- HOME path to user's home directory; same as ~

- PATH path to executable programs

- PWD current directory, same as pwd

- SHELL path to the current shell

- TERM current terminal type

- USER account name of current user, same as whoami
Exercise:

- Check the $PATH (or, pick any) variable (hint: use echo)

http://www.tldp.org/LDP/abs/html/internalvariables.html

V-
DEMO,

|\

——

/4

Allases

To avoid retyping commands - use an alias. Can be defined in system’s
configuration files .profile (Linux), .bash profile (Mac), .bashrc

alias lah='ls -lah'

alias ..='ed ..’

get top process eating memory
alias psmem='ps auxf | sort -nr -k 4'
alias psmemlO='ps auxf | sort -nr -k 4 | head -10'

get top process eating cpu
alias pscpu='ps auxf | sort -nr -k 3
alias pscpulO='ps auxf | sort -nr -k 3 | head -10'

Find files eating space in the current directory
alias spacehogs='du -cks * | sort -rn'

Conditional execution

e |f-then-else
if [! -e $results dir]; then
mkdir Sresults dir;

fi

« Some popular operators for checking a condition include:

- -e <file> TRUE if a specific file/directory exists
- —-s <file> TRUE if non-empty file
- -z <string> TRUE if the given string is empty

- <stringl> = <string2> TRUE if the two strings are equal

help test see all operators

Loops

e for-do-done

for file in '1ls *.txt ; do
echo $file;
gzip Sfile;

done

 while-do-done

