
Code optimization best practices

Mikhail Dozmorov

Summer 2018

Mikhail Dozmorov Code optimization best practices Summer 2018 1 / 12

Timing

Use system.time() functions to measure the time of execution.

> # make a function
> myFun <- function(x) {
+ y = vector(length=x)
+ for (i in 1:x) y[i]=i/(i+1)
+ y
+ }

> # execute the function, measuring the time of the execution
> system.time(myFun(100000))

user system elapsed
0.107 0.002 0.109

Mikhail Dozmorov Code optimization best practices Summer 2018 2 / 12

Memory

Use pryr::object_size() function to measure memory footprint of R
objects

> library(pryr)
> object_size(USArrests)
5.23 kB
object_size(1:10^6)
4 MB

Mikhail Dozmorov Code optimization best practices Summer 2018 3 / 12

Code speedup: Use vectors

> # using loops
> g1 <- function(x) {
+ y = vector(length=x)
+ for (i in 1:x) y[i]=i/(i+1)
+ y
+ }

> # execute the function
> system.time(g1(100000))

user system elapsed
0.107 0.002 0.109

Mikhail Dozmorov Code optimization best practices Summer 2018 4 / 12

Code speedup: Use vectors

> # using vectors
> x <- (1:100000)
> g2 <- function(x) {
+ x/(x+1)
+ }

> # execute the function
> system.time(g2(x))
user system elapsed
0.002 0.000 0.003

Mikhail Dozmorov Code optimization best practices Summer 2018 5 / 12

Pre-allocate arrays

> vec1<-NULL

> # execute the command
> system.time(
+ for(i in 1:100000)
+ vec1 <- c(vec1,mean(1:100)))

user system elapsed
58.181 0.193 58.417

Mikhail Dozmorov Code optimization best practices Summer 2018 6 / 12

Pre-allocate arrays

> vec2 <- vector(
+ mode=“numeric”,length=100000)

> # execute the command
> system.time(
+ for(i in 1:100000)
+ vec2[i] <- mean(1:100))

user system elapsed
2.324 0.063 2.388

Mikhail Dozmorov Code optimization best practices Summer 2018 7 / 12

Use optimized R-functions

rowSums(), rowMeans(), table(), etc.

> matx <- matrix(rnorm(1000000),100000,10)

> # execute the command
> system.time(apply(matx,1,mean))

user system elapsed
2.686 0.057 2.748

> matx <- matrix(rnorm(1000000),100000,10)

> # execute the command
> system.time(rowMeans(matx))

user system elapsed
0.013 0.000 0.014

Mikhail Dozmorov Code optimization best practices Summer 2018 8 / 12

Rcpp = R and C++

R is a high-level interpreted language
C/C++ are low-level compiled languages
C is approximately more than 50X times faster than R
R is much better for prototyping - one line of code in R is typically
many lines of code in C/C++
Rcpp was created by Dirk Eddelbuettel and Romain Francois in 2011.
Permits direct interchange of rich R objects between R and C++

https://darrenjw.wordpress.com/2011/07/16/gibbs-sampler-in-various-languages-revisited/

http://adv-r.had.co.nz/Rcpp.html

http://dirk.eddelbuettel.com/code/rcpp.html

Mikhail Dozmorov Code optimization best practices Summer 2018 9 / 12

https://darrenjw.wordpress.com/2011/07/16/gibbs-sampler-in-various-languages-revisited/
http://adv-r.had.co.nz/Rcpp.html
http://dirk.eddelbuettel.com/code/rcpp.html

Code profiling
Profiling is a tool, which can be used to find out how much time is spent in
each function. Code profiling can give a way to locate those parts of a
program which will benefit most from optimization.

Rprof() – turn profiling on
Rprof(NULL) – turn profiling off
summaryRprof("Rprof.out") – Summarize the output of the
Rprof() function to show the amount of time used by different R
functions.

> summaryRprof("bmslow.out")
$by.self

self.time self.pct total.time total.pct
"cbind" 400.52 99.39 400.52 99.39
"rnorm" 1.70 0.42 1.70 0.42
"bmslow" 0.74 0.18 402.96 100.00

Mikhail Dozmorov Code optimization best practices Summer 2018 10 / 12

Code profiling

microbenchmark - Accurate Timing Functions. Provides infrastructure
to accurately measure and compare the execution time of R expression
profvis - Interactive Visualizations for Profiling R Code Overview,
bench - High Precision Timing of R Expressions

https://cran.r-project.org/web/packages/microbenchmark/index.html

https://rstudio.github.io/profvis/

http://r-lib.github.io/bench, https://github.com/r-lib/bench

Mikhail Dozmorov Code optimization best practices Summer 2018 11 / 12

https://cran.r-project.org/web/packages/microbenchmark/index.html
https://rstudio.github.io/profvis/
http://r-lib.github.io/bench
https://github.com/r-lib/bench

R goodies

skimr - A frictionless, pipeable approach to dealing with summary
statistics, https://github.com/ropenscilabs/skimr
data.table - fast data reading, subsetting, aggregating, summarizing,
https://github.com/Rdatatable/data.table/wiki/Getting-started
Whenever you get a strange execution error it is sometimes helpful to
show the history of all the function calls leading to that error. This is
done by typing traceback() at the command prompt

Mikhail Dozmorov Code optimization best practices Summer 2018 12 / 12

https://github.com/ropenscilabs/skimr
https://github.com/Rdatatable/data.table/wiki/Getting-started

