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Timing

Use system.time() functions to measure the time of execution.

> # make a function
> myFun <- function(x) {
+ y = vector(length=x)
+ for (i in 1:x) y[i]=i/(i+1)
+ y
+ }

> # execute the function, measuring the time of the execution
> system.time( myFun(100000) )

user system elapsed
0.107 0.002 0.109
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Memory

Use pryr::object_size() function to measure memory footprint of R
objects

> library(pryr)
> object_size(USArrests)
5.23 kB
object_size(1:10^6)
4 MB
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Code speedup: Use vectors

> # using loops
> g1 <- function(x) {
+ y = vector(length=x)
+ for (i in 1:x) y[i]=i/(i+1)
+ y
+ }

> # execute the function
> system.time( g1(100000) )

user system elapsed
0.107 0.002 0.109

Mikhail Dozmorov Code optimization best practices Summer 2018 4 / 12



Code speedup: Use vectors

> # using vectors
> x <- (1:100000)
> g2 <- function(x) {
+ x/(x+1)
+ }

> # execute the function
> system.time( g2(x) )
user system elapsed
0.002 0.000 0.003
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Pre-allocate arrays

> vec1<-NULL

> # execute the command
> system.time(
+ for(i in 1:100000)
+ vec1 <- c(vec1,mean(1:100)))

user system elapsed
58.181 0.193 58.417
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Pre-allocate arrays

> vec2 <- vector(
+ mode=“numeric”,length=100000)

> # execute the command
> system.time(
+ for(i in 1:100000)
+ vec2[i] <- mean(1:100))

user system elapsed
2.324 0.063 2.388
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Use optimized R-functions

rowSums(), rowMeans(), table(), etc.

> matx <- matrix(rnorm(1000000),100000,10)

> # execute the command
> system.time(apply(matx,1,mean))

user system elapsed
2.686 0.057 2.748

> matx <- matrix(rnorm(1000000),100000,10)

> # execute the command
> system.time(rowMeans(matx))

user system elapsed
0.013 0.000 0.014
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Rcpp = R and C++

R is a high-level interpreted language
C/C++ are low-level compiled languages
C is approximately more than 50X times faster than R
R is much better for prototyping - one line of code in R is typically
many lines of code in C/C++
Rcpp was created by Dirk Eddelbuettel and Romain Francois in 2011.
Permits direct interchange of rich R objects between R and C++

https://darrenjw.wordpress.com/2011/07/16/gibbs-sampler-in-various-languages-revisited/

http://adv-r.had.co.nz/Rcpp.html

http://dirk.eddelbuettel.com/code/rcpp.html
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Code profiling
Profiling is a tool, which can be used to find out how much time is spent in
each function. Code profiling can give a way to locate those parts of a
program which will benefit most from optimization.

Rprof() – turn profiling on
Rprof(NULL) – turn profiling off
summaryRprof("Rprof.out") – Summarize the output of the
Rprof() function to show the amount of time used by different R
functions.

> summaryRprof("bmslow.out")
$by.self

self.time self.pct total.time total.pct
"cbind" 400.52 99.39 400.52 99.39
"rnorm" 1.70 0.42 1.70 0.42
"bmslow" 0.74 0.18 402.96 100.00
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Code profiling

microbenchmark - Accurate Timing Functions. Provides infrastructure
to accurately measure and compare the execution time of R expression
profvis - Interactive Visualizations for Profiling R Code Overview,
bench - High Precision Timing of R Expressions

https://cran.r-project.org/web/packages/microbenchmark/index.html

https://rstudio.github.io/profvis/

http://r-lib.github.io/bench, https://github.com/r-lib/bench
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R goodies

skimr - A frictionless, pipeable approach to dealing with summary
statistics, https://github.com/ropenscilabs/skimr
data.table - fast data reading, subsetting, aggregating, summarizing,
https://github.com/Rdatatable/data.table/wiki/Getting-started
Whenever you get a strange execution error it is sometimes helpful to
show the history of all the function calls leading to that error. This is
done by typing traceback() at the command prompt
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