
BEST PRACTICES OF CODE ORGANIZATION

Mikhail Dozmorov

Summer 2018

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 1 / 17



Automating everything

Little automation is better than no automation
It’s more work to do things properly, but it could save you a ton of
aggravation down the road

What to automate?

what you’re trying to do
what you’re thinking about
what you’re seeing
what you’re concluding and why

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 2 / 17



Good vs. bad programming

“Any fool can write code that a computer can understand”
“Good programmers write code that humans can understand”

Martin Fowler, 2008

Bad programmer explains him/herself with comments, good programmer
explains him/herself with code

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 3 / 17



Good code = Clean code
Follow coding conventions

PEP-8 for Python, PSR-2 for PHP, google “<language_name>
coding conventions” for more
Google’s R Style Guide, R style guide by Hadley Wickham

Clean code is

Understandable at first glance
Neat and elegant
Unambigious
Not necesserily computationally efficient
Self-explanatory
Maintainable

http://www.cbs.dtu.dk/courses/27610/clean_code_index.html#clean-code-and-refactoring

https://www.python.org/dev/peps/pep-0008/

http://www.php-fig.org/psr/psr-2/

https://google.github.io/styleguide/Rguide.xml

http://adv-r.had.co.nz/Style.html
Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 4 / 17

http://www.cbs.dtu.dk/courses/27610/clean_code_index.html#clean-code-and-refactoring
https://www.python.org/dev/peps/pep-0008/
http://www.php-fig.org/psr/psr-2/
https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html


Bad code

Full of “magic” – variables/values noone can understand
Cluttered, or too loose
Redundant
Poorly commented
Does not follow conventions
Hardly maintainable

Code represents you – don’t write a bad code

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 5 / 17



Good vs. Bad code

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 6 / 17



Good vs. Bad code

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 7 / 17



Good variable names

Variable names – nouns

informative
unambigious
descriptive
variables are in lower case, constants are in UPPER case

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 8 / 17



Good variable names

Tab completion - Almost all modern text editors provide tab
completion, so that typing the first part of a variable name and then
pressing the tab key inserts the completed name of the variable.
Employing this means that meaningful, longer variable names are no
harder to type than terse abbreviations.
choose and follow conventions

underscore_convention
camelCaseConvention
dot.convention

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 9 / 17



Good vs. bad variable names

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 10 / 17



Good vs. bad variable names

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 11 / 17



Good function names

Function names – verbs
“verb first” rule, e.g., print_full_name
informative, unambigious, descriptive, etc., as for variables

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 12 / 17



Good naming practices

Short but meaningful
Don’t use spaces, either in variable names or file names, use underscore
“_" instead, e.g., “tcga_first_batch”
Be careful about extra spaces within cells, “female” is not the same as
" female" or “female ”
Avoid special characters, except for underscores and hyphens. Other
symbols ($, @, %, #, &, *, (, ), !, /, etc.) often have special meaning
in programming languages, and so they can be harder to handle

good name good alternative avoid

Max_temp_C MaxTemp Maximum Temp (◦C)
Precipitation_mm Precipitation precmm
Mean_year_growth MeanYearGrowth Mean growth/year
sex sex M/F
weight weight w.
cell_type CellType Cell type
Observation_01 first_observation 1st Obs.

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 13 / 17



Refactoring

Refactoring – making better code

Make code understandable by other developers. Here we ask ourselves
a question; If I would give the code to my grandma, would she
understand it?
Increase readability of the code = reduce cluttering of the code. Make
code loose in tight places and tight in loose places
Globally search-and-replace bad variable/function names

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 14 / 17



Principles of good code development

DRY
Don’t Repeat Yourself
Do everything to avoid code repetition!

WET
Write Everything (more than) Twice
The first time you write a code, you are writing it for the solution,
second for comprehension, third for efficiency and last for your sake

KISS
Keep It Small and Simple
Simplicity over complicity, shorter over longer

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 15 / 17



Computational reproducibility in plain language

Write code that uses relative paths.
Don’t use hard-coded absolute paths (i.e.
/Users/stephen/Data/seq-data.csv or
C:\Stephen\Documents\Data\Project1\data.txt).
Put the data in the project directory and reference it relative to where
the code is, e.g., data/gapminder.csv, etc.

Always set your seed. If you’re doing anything that involves
random/monte-carlo approaches, always use set.seed().
Document everything and use code as documentation.

Document why you do something, not mechanics.
Document your methods and workflows.
Document the origin of all data in your project directory.
Document when and how you downloaded the data.
Record data version info.
Record software version info with session_info().
Use dynamic documentation to make your life easier.

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 16 / 17



Summary of good software development practices

1 Place a brief explanatory comment at the start of every program
2 Decompose programs into functions
3 Be ruthless about eliminating duplication
4 Always search for well-maintained software that do what you need
5 Test libraries before relying on them
6 Give functions and variables meaningful names
7 Make dependencies and requirements explicit
8 Do not comment and uncomment sections of code to control a

program’s behavior
9 Provide a simple example or test dataset
10 Submit code to a reputable DOI-issuing repository

The core realization in these practices is that being readable, reusable, and
testable are all side effects of writing modular code, i.e., of building
programs out of short, single-purpose functions with clearly-defined inputs
and outputs

Mikhail Dozmorov BEST PRACTICES OF CODE ORGANIZATION Summer 2018 17 / 17


