
Command line automation: Makefiles

Mikhail Dozmorov

Summer 2018

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 1 / 13

GNU make

You will almost certainly have to re-run an analysis more than once,
possibly with new or changed data
GNU Make is a tool which controls the workflow of generating
target/result files from the dependencies (source files)

Target/result files may be text files, standalone programs, packages

Capabilities of Make

Make is for more than just a tool for compiling software
The path from raw data to final results
Automates/documents a workflow
Intelligently handles the dependencies among data files, code
Accounts for the updates in data, code
Re-runs only the necessary code, based on what has changed

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 2 / 13

Makefile structure

Makefile contains recipes in the form of:

target: dependencies
<code>

target - the outcome
dependencies - the necessary parts to build the outcome
code - outlines the rules to build target using dependencies
All code/commands must be tab-indented
Dependencies, if more than one, must be space-separated

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 3 / 13

Makefile example
Save in Makefile text file, no extension

An example of obtaining counts and types of the cytobands
all: cytoband_counts.txt cytoband_types.txt

Download the raw data
cytoBand.txt.gz:

wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/$@

Obtain counts of the cytobands
cytoband_counts.txt: cytoBand.txt.gz

zcat < $< | cut -f1 | sort | uniq -c | awk '{OFS="\t"} {print $$2,$$1}' | sort -k2 -nr > $@

Obtain types of the cytobands
cytoband_types.txt: cytoBand.txt.gz

zcat < $< | cut -f5 | sort | uniq -c | awk '{OFS="\t"} {print $$2,$$1}' | sort -k2 -nr > $@

clean:
rm *.gz

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 4 / 13

How to use make

If you name your make file Makefile, then just go into the directory
containing that file and type make - it’ll run the first recipe
If you name your make file something.else, then type make -f
something.else
By default, make builds the first target listed in the Makefile.
Generally, the first target generates all other targets

all: target1 target2 target3

To build a specific target, type make target. For example, make
cytoband_counts.txt

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 5 / 13

Typical Makefile recipes

clean – commands to clean up the working directory from temporary
files
test – runs a series of tests
install – installs a software

Typical software installation steps using Makefiles

./configure
make
make install

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 6 / 13

Makefile variables

A variable is a name defined in a makefile to represent a string of text,
called the variable’s value. Variables are used to simplify recipes
Defining internal Makefile variable

DB = "/home/genomerunner/db_2.00_06.10.2014""

Using a variable

${DB} or $(DB)

https://www.gnu.org/software/make/manual/make.html#Using-Variables

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 7 / 13

https://www.gnu.org/software/make/manual/make.html#Using-Variables

Using shell variables in Make

Shell variables, e.g. $HOME, need to be prefixed by $
Within shell variable use: awk '{print $0}'
Within Makefile variable use: awk '{print $$0}'
Capturing output of shell commands into a variable: TXT_FILES =
$$(shell find . –type f –name "*.txt")

TIP!

The content of a Makefile runs in its own shell environment. The
default shell environment is /bin/sh. To set shell environment to
bash, use SHELL=/bin/bash
Why bother? Variable $SECONDS exists in bash, but not in sh. Other
syntax incompatibilities, e.g., if-else-fi syntax

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 8 / 13

Automatic variables
Makefile contains recipes in the form of:

target: dependencies
<code>

$< - the name of the first dependency
$@ - the name of the target of the rule
$? - the names of all the dependencies
$(<F) - the file part of the first dependency

Example:

COMPILER = g++ # Define compiler
COMPILER_FLAGS=-c –Wall # Define flags

hello.o: hello.c hello.h # Recipe
$(COMPILER) $(COMPILER_FLAGS) $< -o $@

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html
Mikhail Dozmorov Command line automation: Makefiles Summer 2018 9 / 13

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Patterns

A pattern rule allows “wildcard” matching between the target and the
dependencies. The % wildcard is similar to the * wildcard in bash

Existing files: module0_induction.Rmd, module1_basics.Rmd,
module2_managingR.Rmd

Makefile recipe:

%.html: %.Rmd
echo $(@)
./compile_slides $(basename $(@))

Results: module0_induction.html, module1_basics.html,
module2_managingR.html

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 10 / 13

Visualize Makefiles

There are tools to look at Makefiles, like makefile2dot

python makefile2dot.py < Makefile | dot -Tpng > out.png && open out.png

https://github.com/vak/makefile2dot

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 11 / 13

https://github.com/vak/makefile2dot

Debugging Makefiles

Problem: Make is doing something strange
Solution: Keep is simple. Use make -n -d (-n, or --dry-run doesn’t
run anything and -d turns on debugging information)

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 12 / 13

More automation

snakemake - workflow management system similar to make but uses
Python syntax
Sequana - a set of Snakemake NGS pipelines
Drake - Data workflow tool, like a “Make for data”
CWL (Common Workflow Language) - a specification for describing
analysis workflows and tools
Nextflow - Data-driven computational pipelines

https://snakemake.readthedocs.io/en/stable/

http://sequana.readthedocs.io, https://github.com/sequana/sequana

https://github.com/Factual/drake, short tutorial
https://www.datascienceatthecommandline.com/chapter-6-managing-your-data-workflow.html

http://www.commonwl.org/, https://github.com/common-workflow-language/common-workflow-language,
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2

https://www.nextflow.io/

Mikhail Dozmorov Command line automation: Makefiles Summer 2018 13 / 13

https://snakemake.readthedocs.io/en/stable/
http://sequana.readthedocs.io
https://github.com/sequana/sequana
https://github.com/Factual/drake
https://www.datascienceatthecommandline.com/chapter-6-managing-your-data-workflow.html
http://www.commonwl.org/
https://github.com/common-workflow-language/common-workflow-language
https://figshare.com/articles/Common_Workflow_Language_draft_3/3115156/2
https://www.nextflow.io/

