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How much do we differ? (number of aligned DNA
base differences)

Human mutation rate is 1.0 – 1.5 x 10-8 per bp per generation: we transmit ~30 new DNA variants with each gamete (J. Roach
et al., 2010, Science; D. Conrad et al., 2011, Nature Genetics)
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Genome diversity

SNPs (Single Nucleotide Polymorphisms) - base substitutions
In humans, occur approx. once per 1,000 bases (∼ 3x106 per genome)
Most polymorphisms (~90%) take the form of SNPs: variations that
involve just one nucleotide
InDels (insertion/deletion, frameshifts) - occur in 1 in every 300 bp
(human)
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Functional Consequences

Type Consequence

SNPs in coding area that alter
aa sequence

Cause of most monogenic disorders,
e.g:
Cystic fibrosis (CFTR)
Hemophilia (F8)

SNPs in coding areas that don’t
alter amino acid sequence

May affect splicing

SNPs in promoter or regulatory
regions

May affect the level, location or timing
of gene expression

SNPs in other regions No direct known impact on phenotype
Useful as markers
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Studying variation – why?

SNPs can cause disease
SNP in clotting factor IX codes for a stop codon: haemophilia

SNPs can increase disease risk
SNP in LDL receptor reduces efficiency: high cholesterol

SNPs can affect drug response
SNP in CYP2D8, a gene in the drug breakdown pathway in the liver,
disrputs breakdown of debrisoquine, a treatment for high blood pressure
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Studying variation – why?

Determine disease risk
Individualised medicine (pharmacogenomics)
Forensic studies
Biological markers
Hybridisation studies, marker-assisted breeding
Understanding evolution
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Reference Sequence

The Human Genome Project gave the “average” DNA sequence of a
small number of people.
This helps us find out how a human develops and works
Does not show us the DNA differences between different humans
Does not reflect the major alleles
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1000 genomes

Delivering 20TB of sequence data
First Pilot. 60 HapMap samples sequenced (low coverage)
Second Pilot. Two trios of European and African descent (high
coverage)
Third Pilot. Sequence 1,000 genes in 1,000 individuals (high coverage)
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Haplotypes

Adjacent SNPs are often highly correlated, occurring together in
individuals of similar ancestry
These combinations of adjacent SNPs are termed haplotypes
A haplotype is a set of SNPs (on average ~25 kb) found to be
statistically associated on a single chromatid and which therefore tend
to be inherited together over time.
The International HapMap (haplotype mapping) project was launched
in 2002 and provided critical insight regarding differences in the SNP
frequencies and genome-wide haplotypes of different ethnic groups
worldwide
Used for grouping subjects by haplotypes.

www.hapmap.org
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HapMap (phase I & II)

Samples from populations with African, Asian and European ancestry.

270 DNA samples from 4 populations:
30 trios (two parents and an adult child) from the Yoruba people of
Ibadan, Nigeria
45 unrelated Japanese from the Tokyo area
45 unrelated Han Chinese from Beijing
30 trios from Utah with Northern and Western European ancestry
(CEPH)
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HapMap (phase III)

Genotypes from 1115 individual from 11 populations:

ASW African ancestry in Southwest USA (71)
CEU Utah residents with Northern and Western European ancestry
from the CEPH collection (162)
CHB Han Chinese in Beijing, China (70)
CHD Chinese in Metropolitan Denver, Colorado (70)
GIH Gujarati Indians in Houston, Texas (83)
JPT Japanese in Tokyo, Japan (82)
LWK Luhya in Webuye, Kenya (83)
MEX Mexican ancestry in Los Angeles, California (71)
MKK Maasai in Kinyawa, Kenya (171)
TSI Toscani in Italia (77)
YRI Yoruba in Ibadan, Nigeria (163)
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dbSNP

Central repository for simple genetic polymorphisms:

single-base nucleotide substitutions
small-scale multi-base deletions or insertions
retroposable element insertions and microsatellite repeat variations
For human (dbSNP build 151)

907.2 Million submissions (submitter SNPs, ss#’s)
325.7 Million unique submitted SNPs (reference SNPs, rs#’s)

http://www.ncbi.nlm.nih.gov/SNP/
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Other SNP resources

ExAC - the Exome Aggregation Consortium (ExAC), a coalition of
investigators seeking to aggregate and harmonize exome sequencing
data from a wide variety of large-scale sequencing projects, and to
make summary data available for the wider scientific community
gnomAD - the Genome Aggregation Database (gnomAD), adds whole
genome variants

http://exac.broadinstitute.org/, ftp://ftp.broadinstitute.org/pub/ExAC_release

http://gnomad.broadinstitute.org/, http://gnomad.broadinstitute.org/downloads

https://macarthurlab.org/2017/02/27/the-genome-aggregation-database-gnomad/
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SNP types

Non-synonymous - In coding sequence, resulting in an aa change
Synonymous - In coding sequence, not resulting in an aa change
Frameshift - In coding sequence, resulting in a frameshift
Stop lost - In coding sequence, resulting in the loss of a stop codon
Stop gained - In coding sequence, resulting in the gain of a stop
codon

How ClinVar defines its clinical significance values. https://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/
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SNP types

Essential splice site - In the first 2 or the last 2 basepairs of an intron
Splice site - 1-3 bps into an exon or 3-8 bps into an intron
Upstream - Within 5 kb upstream of the 5’-end of a transcript
Regulatory region - In regulatory region annotated by Ensembl
5’ UTR - In 5’ UTR
Intronic - In intron
3’ UTR - In 3’ UTR
Downstream - Within 5 kb downstream of the 3’-end of a transcript
Intergenic - More than 5 kb away from a transcript
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Sequence Variant Nomenclature

Human Genome Variation Society nomenclature.
Example: NM_004006.1:c.[145C>T;147C>G] - two substitutions
replacing codon CGC (position c.145 to c.147) by TGG

http://varnomen.hgvs.org/
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Linkage Disequilibrium

LINKAGE DISEQUILIBRIUM - Correlation between nearby variants
such that the alleles at neighbouring markers (observed on the same
chromosome) are associated within a population more often than if
they were unlinked.
LD is the deviation from equilibrium, or random association. (i.e. in a
population, two alleles are always inherited together, though they
should undergo recombination some of the time.)
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Linkage disequilibrium

LD values between two variants are displayed by means of inverted coloured
triangles going from white (low LD) to red (high LD)
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Measures of LD

D = P(AB) − P(A)P(B)

D ranges from – 0.25 to + 0.25
D = 0 indicates linkage equilibrium
dependent on allele frequencies, therefore of little use

D′ = D/maximum possible value

D′ = 1 indicates perfect LD
estimates of D’ strongly inflated in small samples

r2 = D2/P(A)P(B)P(a)P(b)

r2 = 1 indicates perfect LD
measure of choice
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Tag SNPs

HAPLOTYPE - A sequential set of genetic markers that are present
on the same chromosome.
TAG SNPs - Single nucleotide polymorphisms that are correlated with,
and therefore can serve as a proxy for, much of the known remaining
common variation in a region.

Tag SNPs define the minimum SNP set to identify a haplotype

r2 = 1 between two SNPs means one would be ‘redundant’ in the haplotype.
https://estrip.org/articles/read/tinypliny/44920/Linkage_Disequilibrium_Blocks_Triangles.html
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Genotypes

Homozygote - a SNP having two identical alleles of a particular
gene or genes
Heterozygote - a SNP having two different alleles of a particular
gene or genes
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Homo
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Hetero
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HomDel
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HetetroIns
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Genotypes summary
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SNP calling pipeline

https://humgenomics.biomedcentral.com/articles/10.1186/1479-7364-8-14
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SNP calling

Algorithms should have high power to detect a wide range of variation,
including single- and multiple-nucleotide variants (SNVs and MNVs)
and structural variation including indels, sequence replacements and
mobile element insertions
Must have low false discovery rates (FDRs) to minimize costly
validation experiments
Should be able to cope with challenging loci, including highly repetitive
sequence and reference errors, and be robust to high levels of local
diversity to access clinically interesting regions such as the human
leukocyte antigen (HLA) loci
Should have low resource requirements and run on commodity
hardware while achieving fast turnaround times
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SNP calling

The most common approach is to map reads to a reference genome
and either scan for systematic differences with the reference or identify
haplotypes that are well supported by the data

Strengths: Highly sensitive, use common reference, use paired-end
information, low on computations
Weaknesses: Focus on single-base variants, fail in highly divergent
regions, e.g., Human Leukocyte Antigen region, require realignment
around known indels, computationally high

Mikhail Dozmorov Single Nucleotide Polymorphisms Spring 2018 29 / 90



SNP calling

A complementary approach is reference-free sequence assembly - de
Bruijn or overlap graphs
Search this data structure for evidence of polymorphisms

Strengths: By not relying on a reference genome, this approach is
variant agnostic, copes well with highly divergent regions, naturally
works on the local haplotype level rather than on the level of individual
variants and avoids the need for an initial mapping and alignment step
Weaknesses: high computational requirements, lower sensitivity than
mapping-based approaches, limited by repetitive sequence, as contiguity
information is lost when the reads are broken up into their consecutive
k-mers during graph construction
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Genome Analysis Toolkit

A single framework and the associated tools capable of discovering
high-quality variation and genotyping individual samples using diverse
sequencing machines and experimental designs

Initial read mapping;
Local realignment around indels;
Base quality score recalibration;
SNP discovery and genotyping to find all potential variants;
Machine learning to separate true segregating variation from machine
artifacts common to next-generation sequencing technologies.

https://software.broadinstitute.org/gatk/

DePristo, Mark A., Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R. Maguire, Christopher Hartl, Anthony A. Philippakis,
et al. “A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data.” Nature Genetics
43, no. 5 (May 2011): 491–98. https://doi.org/10.1038/ng.806.
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GATK Variant Calling Best Practices
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Genome Analysis Toolkit

https://software.broadinstitute.org/gatk/

DePristo, Mark A., Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R. Maguire, Christopher Hartl, Anthony A. Philippakis,
et al. “A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data.” Nature Genetics
43, no. 5 (May 2011): 491–98. https://doi.org/10.1038/ng.806.
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Genome Analysis Toolkit

Excellent documentation, tutorials, best practices guidelines
Cloud-ready and parallelizable
Current version - GATK4

Uses Mutect2 algorithm
Adapted for better CNV/SV detection
Neural network for variant filtering

https://software.broadinstitute.org/gatk/gatk4
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GATK HaplotypeCaller

Jointly calling variants on multiple samples
Better detects insertions and deletions
Produces square matrix with samples vs. variants calls
Algorithm:

defining “Active regions” with high coverage
local reassembly using de Bruijn graph
hidden Markov Model to identify match, insertion, or deletion
haplotype calling based on CIGAR information using Bayesian model

Poplin, Ryan, Valentin Ruano-Rubio, Mark A. DePristo, Tim J. Fennell, Mauricio O. Carneiro, Geraldine A. Van der Auwera,
David E. Kling, et al. “Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples.” BioRxiv, January 1,
2017. https://doi.org/10.1101/201178.
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Filtering

The rationale for filtering

To eliminate False Positive variants from variant list
What causes errors in variant calling?

Sequencing errors - should be accounted for by base quality +
recalibration + marking of duplicates
Incorrect alignment - Re-alignment step should have reduced this
problem but not eliminated it

Thus although QUAL (which depends on Mapping Quality of reads
and Base qualities) is a useful measure, there will still be FP with high
QUAL
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VCF annotation
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INFO fields – important for filtering
QD: variant quality score over depth

Confidence in the site being variant should increase with increasing depth
MQ: Root Mean Square of MAPQ of all reads at locus

Regions of excessively low mapping quality are ambiguously mapped and
variants called within are suspicious

MQ0: number of MAPQ 0 reads at locus
MQRankSum: Mapping quality rank sum test

If the alternate bases are more likely to be found on reads with lower
MAPQ than reference bases then the site is likely mismapped

Haplotype score: Probability that the reads in a window around the variant can be
explained by at most two haplotypes
FS: fisher exact test of read strand

If the reference-carrying reads are balanced between forward and reverse
strands then the alternate-carrying reads should be as well

ReadPosRankSum: Read position rank sum test

If the alternate bases are biased towards the beginning or end of the
reads then the site is likely a mapping artifact
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Strand bias (assume heterozygote)
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Hard vs. soft filtering

Can set thresholds for the relevant INFO fields and request that all
thresholds are passed for a variant to be considered valid
Which fields to you use and where do you set the thresholds? – use
datasets of known SNPs and compare their INFO fields to those likely
FP variants
Disadvantage of hard filtering – loosely justified hard cut-offs
Variant Quality Score Recalibration (GATK) or soft filtering
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VCF files: normalization

The VCF format is quite precise but still leaves room for representing
one variant in multiple ways - normalization (harmonization) of variant
representation is needed
Parsimony

Pos: 5, Ref: ATC, Alt: AT
Or Pos: 6, Ref: TC, Alt: T >> most parsimonious

Left alignment, suppose context: pos 8, ref: ATTTT, T deletion
Pos: 10, Ref: TT, Alt: T
Or Pos: 8, Ref: AT, Alt: A >> left aligned

MNP on separate lines
150 TCT CCC - Can be decomposed into two records: 150 T C AND 152
T C

One should also ensure that the same reference naming is used in both
comparison files and that both files have the same sort order

https://github.com/chapmanb/bcbio.variation/wiki/Normalized-variant-representation

http://genome.sph.umich.edu/wiki/Variant_Normalization

http://annovar.openbioinformatics.org/en/latest/articles/VCF/
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Other VCF issues

Chromosome labeling: chr1, chr2 . . . vs. 1, 2, X, Y, M
Chromosome ordering: 1, 2, 3, 4 . . . vs. 1, 10, 11, . . .
GATK enforcement of “X, Y, MT” sorting vs. “MT, X, Y”
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vcflib - a simple C++ library for parsing and
manipulating VCF files, + many command-line
utilities

Comparison: intersection, overlay-merge, combine, validate
Format conversion: to tab-separated, BED formats
Filtering: using the INFO and sample fields, random sampling, select
by criteria
Annotation: one VCF with INFO fields from another VCF, from BED,
annotate by distance
Samples: extract sample names, remove samples
Ordering: sort, remove duplicates
Variant representation: complex variants harmonization
Statistics and EDA: summary stats, entropy, heterozygosity rate,
classify variants

https://github.com/vcflib/vcflib
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bcftools — utilities for variant calling and
manipulating VCFs and BCFs

http://www.htslib.org/doc/bcftools.html

Li, Heng. “A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population Genetical
Parameter Estimation from Sequencing Data.” Bioinformatics (Oxford, England) 27, no. 21 (November 1, 2011): 2987–93.
https://doi.org/10.1093/bioinformatics/btr509.

Danecek, Petr, and Shane A. McCarthy. “BCFtools/Csq: Haplotype-Aware Variant Consequences.” Bioinformatics 33, no. 13
(July 1, 2017): 2037–39. doi:10.1093/bioinformatics/btx100.
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx100
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bcftools examples

https://samtools.github.io/bcftools/howtos/index.html
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bcftools examples
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cyvcf2

https://academic.oup.com/bioinformatics/article/2971439/

https://brentp.github.io/cyvcf2/
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Alignment errors during mapping require fix
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Alignment
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Few mismatches when considering one-to-one
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Mapping vs. alignment
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Local realignment around indels
Sequence aligners are often unable to perfectly map reads containing
insertions or deletions (indels)

Indel-containing reads can be either left unmapped or arranged in
gapless alignments
Mismatches in a particular read can interfere with the gap, esp. in
low-complexity regions
Single-read alignments are “correct” in a sense that they do provide
the best guess given the (limited!) information and constrains.

Major issues:

Indel detection becomes difficult with so many missing reads
Indels can be overlooked or misplaced in individual reads
Artifacts introduced by the gapless alignments cause the appearance of
false positive SNPs (usually in clusters)

https://www.broadinstitute.org/files/shared/mpg/nextgen2010/nextgen_sivachenko.pdf
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Example: SNP clusters are really a hidden indel
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Example: SNP clusters are really a hidden indel
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Example : Indel “scatter”

A (heterogeneous) insertion + adjacent insertion may be clean
homogeneous (?) insertion
Even when aligner detects indels in individual reads successfully, they
can be scattered around (e.g. due to additional mismtaches in the read)
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What is annotation?

Adding information about the variants
Two broad categories of annotations
annotations that depend on gene models

coding/non-coding
if coding: synonymous / non-synonymous
if non-synonymous - what is the impact on protein structure (Polyphen,
SIFT, etc)

annotations that do not depend on gene models
variant frequency in different databases / different populations
degree of conservation across species

Considerable complications caused by different gene models
Two approaches to problem

decide ex-ante what which transcript to use for each gene
annotate with all transcript for a given gene and pick the highest impact
effect
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Loss of function (LoF) SNPs

Genetic variants predicted to severely disrupt protein-coding genes,
collectively known as loss-of-function (LoF) variants
Typically rare
Human genomes typically contain ~100 genuine LoF variants with ~20
genes completely inactivated
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Frequency of loss of function SNPs

http://science.sciencemag.org/content/335/6070/823
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Types of LoF SNPs

Stop codon–introducing (nonsense) or splice site–disrupting
single-nucleotide variants (SNVs)
Insertion/deletion (indel) variants predicted to disrupt a transcript’s
reading frame
Larger deletions removing either the first exon or more than 50% of the
protein-coding sequence of the affected transcript
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Location of LoF SNPs
Both nonsense SNVs and frameshift indels are enriched toward the 3’ end of
the affected gene, consistent with a greater tolerance to truncation close to
the end of the coding sequence

Distribution of frameshift indels along the coding region of affected genes,
before and after filtering
http://science.sciencemag.org/content/335/6070/823
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False positives LoF SNPs

Predicted functional effect of a nonsense or frameshift variant can be
altered by other nearby variants on the same chromosome
Predicted splice-disrupting SNVs and indels can be rescued by nearby
alternative splice sites
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Many tools + many transcript annotations = many
answers
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Annotation software
Two sets of software

Annovar
provides a wide range of annotations that can be applied with one tool

SNPEff and dbNSFP (non-synoymous functional prediction)
GATK recommends snpEff, but with strict requirements

snpEff version 2.0.5 (not 2.0.5d)
db should be GRCh37.64 (which is the ensembl database version 64)
should use the option -onlyCoding true (using false can cause erroneous
annotation)

GATKs VariantAnnotator to pick the highest impact.
Finally, also annotate with dbNSFP, which contains:

variant frequencies
conservation scores
protein function effect
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snpEff annotation get placed into INFO field

http://snpeff.sourceforge.net/
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snpEff annotation get placed into INFO field

http://snpeff.sourceforge.net/
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Annovar

http://annovar.openbioinformatics.org/en/latest/
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VEP - Variant Effect Predictor

http://www.ensembl.org/info/docs/tools/vep/index.html
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VEP script

http://uswest.ensembl.org/info/docs/tools/vep/script/index.html
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VEP script

http://uswest.ensembl.org/info/docs/tools/vep/script/index.html
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A second source of functional annotation: dbNSFP

NSFP = Non-synonymous functional prediction
Limited to non-synonymous variants
Has many data fields. We use only:

dbnsfpSIFT_score
dbnsfpPolyphen2_HVAR_pred
dbnsfp29way_logOdds
dbnsfp1000Gp1_AF
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Example of annotation with dbNSFP
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vcfanno
annotate a VCF with other VCFs/BEDs/tabixed files

https://github.com/brentp/vcfanno https:
//genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0973-5
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Cancer Genome Interpreter (CGI)
Designed to support the identification of tumor alterations that drive the
disease and detect those that may be therapeutically actionable. CGI relies
on existing knowledge collected from several resources and on
computational methods that annotate the alterations in a tumor according
to distinct levels of evidence.

https://cancergenomeinterpreter.org/home,
https://www.biorxiv.org/content/early/2017/06/21/140475
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Annotation problems
Ambiguity - one variant may be annotated differently depending on the
choice of transcripts and software
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Straightforward annotation

The variant NC_000011.9:g.57983194A>G (rs7103033) is relatively
straightforward to annotate. It is the final base of the final exon in both
transcripts at this position (a CCDS transcript (green) and a ‘merged’
ENSEMBL/Havana (GENCODE) transcript (gold)). The final codon has
changed from TGA (stop codon) to TGG (tryptophan), so this is
unambiguously a stop-loss variant. Using the ENSEMBL transcript set,
both ANNOVAR and VEP correctly annotate this variant as stop-loss.
https://genomemedicine.biomedcentral.com/articles/10.1186/gm543
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Ambigious annotation

The variant NC_000006.11:g.30558477_30558478insA (rs72545970) is
more difficult to annotate. It is the penultimate base of the exon for all but
one of the transcripts shown. It is a single-base insertion, so could be
annotated as a frameshift variant. Then again, it is an insertion in a stop
codon, so could be a stop-loss variant. In fact, the final codon, TGA (stop
codon), remains TGA with this variant (insertion of a single base A), so it is
actually a synonymous variant.
https://genomemedicine.biomedcentral.com/articles/10.1186/gm543
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Allele frequencies differ in different populations

exac.broadinstitute.org gnomad.broadinstitute.org

Always filter by frequency separately in every available population
do not filter for frequency in only one population
do not filter on average worldwide frequency

If variant causes severe phenotype, should always be rare in every
population

ExAC reports the allele frequency from diverse ancestries
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SNP exploration

https://gemini.readthedocs.io/en/latest/

https://github.com/arq5x/gemini
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GEMINI annotations

GEMINI (GEnome MINIng), a flexible software package for exploring
all forms of human genetic variation.
Integrates genetic variation with a diverse and adaptable set of genome
annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a
unified database to facilitate interpretation and data exploration.

http:
//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003153
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GEMINI variant mining framework

Structured Query Language (SQL), SQLite database with SNP
annotations.

http:
//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003153
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Gemini howto

Getting started with GEMINI
Summary plots from GEMINI
Incidental findings using GEMINI

https://davetang.org/muse/2016/01/13/getting-started-with-gemini/

https://davetang.org/muse/2017/06/18/summary-plots-gemini/

https://davetang.org/muse/2017/06/21/incidental-findings-using-gemini/

Paila, Umadevi, Brad A. Chapman, Rory Kirchner, and Aaron R. Quinlan. “GEMINI: Integrative Exploration of Genetic
Variation and Genome Annotations.” PLoS Computational Biology 9, no. 7 (2013): e1003153.
doi:10.1371/journal.pcbi.1003153. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003153
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Genotype imputation

Generally, a subset of all genetic markers in the genome can be directly
genotyped (SNP arrays, exome sequencing)
Imputation allows evaluating genetic markers that are not directly
genotyped for association with a phenotype
Particularly useful in GWAS meta-analysis
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Genotype imputation in related individuals
Family samples are the most intuitive and simple to genotype - using
stretches of shared haplotypes - “identity-by-descent” (IBD) blocks

http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.9.081307.
164242

Mikhail Dozmorov Single Nucleotide Polymorphisms Spring 2018 83 / 90

http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.9.081307.164242
http://www.annualreviews.org/doi/abs/10.1146/annurev.genom.9.081307.164242


Genotype imputation in unrelated individuals

Using haploblocks from haplotype reference panels, e.g., HapMap, 1000
genomes
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Genotype imputation software

Genotype imputation tools typically fall into two categories:
computationally intensive tools such as IMPUTE, MACH and
fastPHASE/BIMBAM that take into account all observed genotypes when
imputing each missing genotype
computationally more efficient tools such as PLINK, TUNA, WHAP and
BEAGLE that typically focus on genotypes for a small number of nearby
markers when imputing each missing genotype
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SNP clustering

MSEA-clust - Kolmogorov-Smirnov adaptation to test whether the
distribution of mutations along the genes is significantly different from
a random distribution.
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MuSiC

Mutational Significance in Cancer (MuSiC) Mutation analysis pipeline:
1 significantly mutated genes,
2 significantly mutated pathways,
3 mutation correlation test (pairwise gene test for mutation

correlation/exclusion),
4 clinical correlation test,
5 proximity analysis (clustering of mutations),
6 COSMIC/OMIM matching,
7 Pfam protein domain mutation analysis.

http://gmt.genome.wustl.edu/

https://github.com/ding-lab/MuSiC2

Dees, Nathan D., Qunyuan Zhang, Cyriac Kandoth, Michael C. Wendl, William Schierding, Daniel C. Koboldt, Thomas B.
Mooney, et al. “MuSiC: Identifying Mutational Significance in Cancer Genomes.” Genome Research 22, no. 8 (August 2012):
1589–98. https://doi.org/10.1101/gr.134635.111.
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OncodriveCLUST

Gene-centric protein-affecting mutation clustering.
Significant mutations defined vs. background rate accounting for gene
length and the overal number of gene’ mutations (binomial test)
Clusters within 5 amino-acid residues.

http://bg.upf.edu/group/projects/oncodrive-clust.php

Tamborero, David, Abel Gonzalez-Perez, and Nuria Lopez-Bigas. “OncodriveCLUST: Exploiting the Positional Clustering of
Somatic Mutations to Identify Cancer Genes.” Bioinformatics (Oxford, England) 29, no. 18 (September 15, 2013): 2238–44.
https://doi.org/10.1093/bioinformatics/btt395.
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MutSigCV

Mutational heterogeneity (among patients and cancers) leads to many
false positive detection. Need to account for:

1 regional heterogeneity (among patients, considering mutation spectrum),
2 gene expression (highly expressed genes mutate more frequently),
3 replication timing (higher at later replicating regions)

http://archive.broadinstitute.org/cancer/cga/mutsig

Lawrence, Michael S., Petar Stojanov, Paz Polak, Gregory V. Kryukov, Kristian Cibulskis, Andrey Sivachenko, Scott L. Carter,
et al. “Mutational Heterogeneity in Cancer and the Search for New Cancer-Associated Genes.” Nature 499, no. 7457 (July
2013): 214–18. https://doi.org/10.1038/nature12213.
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Other tools

Platypus - SNP caller combining haplotype-based, multi-sample, local
sequence assembly algorithms in a Bayesian framework

http://www.well.ox.ac.uk/platypus

Rimmer, Andy, Hang Phan, Iain Mathieson, Zamin Iqbal, Stephen R. F. Twigg, WGS500 Consortium, Andrew O. M. Wilkie, Gil
McVean, and Gerton Lunter. “Integrating Mapping-, Assembly- and Haplotype-Based Approaches for Calling Variants in Clinical
Sequencing Applications.” Nature Genetics 46, no. 8 (August 2014): 912–18. https://doi.org/10.1038/ng.3036.
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