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Tree of life

Ciccarelli, Francesca D., Tobias Doerks, Christian von Mering, Christopher J. Creevey, Berend Snel, and Peer Bork. “Toward
Automatic Reconstruction of a Highly Resolved Tree of Life.” Science (New York, N.Y.) 311, no. 5765 (March 3, 2006):
1283–87. doi:10.1126/science.1123061.
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Phylogenetic tree

Three main branches of life (Bacteria, Archaea, and Eucarya).
Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural
system of organisms: proposal for the domains Archaea, Bacteria, and
Eucarya. Proc. Natl. Acad. Sci.

Higher-order taxonomy to reconcile bacterial taxonomy with
rRNA-based phylogeny.

Garrity, G. M., J. A. Bell, and D. B. Searles. 2001. Taxonomic outline of
the prokaryotes. Bergey’s manual of systematic bacteriology, 2nd ed.,
release 1.0. Springer-Verlag, New York, NY
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Microbiome - our second genome

Microbiota - microorganisms—such as bacteria, fungi, viruses, and
archaea—present in a community
Microbiome - all of the genetic material of a microbial community
sequenced together
Microbes constitute 90% of the total number of cells associated with
our bodies; only the remaining 10% are human cells

Savage DC. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31:107–33
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Why the Human Microbiome?

Each human cell has the same protein-encoding potential. Microbes
are more diverse and dynamic than human genome.
Human - ~25,000 genes. Human gut microbiome - ~2-3 million genes,
typically >160 “species” at any given sample time

Qin, Junjie, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer Solvsten Burgdorf, Chaysavanh Manichanh, Trine
Nielsen, et al. “A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing.” Nature 464, no. 7285
(March 4, 2010): 59–65. https://doi.org/10.1038/nature08821.
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Human Microbiome

Not all microbes are bad: Beneficial microbes perform functions essential for
human health

Vitamin synthesis
Digestion
Education and activation of immune system
Inhibition of skin colonization by pathogens

Many microbial-host and microbial-microbial interactions remain
unknown
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How can we analyze the microbiome?

Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet. 2013 Oct
15;22(R1):R88-94. doi: 10.1093/hmg/ddt398. Epub 2013 Aug 13. Review.
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Elucidating the diversity of the human microbiome

Traditional approaches rely on isolating bacteria in pure culture
The majority of bacterial species do not grow in culture = “the great
plate count anomaly”
Culturing favors microbial “weeds” - not necessarily the most dominant
or influential species
Excludes microbes that rely on community interactions
Direct sampling to sequencing is preferrable
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Types of microbiome analysis

1 Environmental clone libraries (functional metagenomics): use of Sanger
sequencing (frequently) instead of more cost-efficient next-generation
sequencing

2 Amplicon metagenomics (single gene studies, 16s rDNA):
next-generation sequencing of PCR amplified ribosomal genes providing
a single reference gene–based view of microbial community ecology

3 Shotgun metagenomics: use of next-generation technology applied
directly to environmental samples

4 Metatranscriptomics: use of cDNA transcribed from mRNA
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Microbiome analysis questions

Who is out there? Identifying the composition of a microbial
community either by using amplicon data for single genes or by
deriving community composition from shotgun metagenomic data
using sequence similarities.
What are they doing? Using shotgun data (or metatranscriptomic
data) to derive the functional complement of a microbial community
using similarity searches against a number of databases.
Who is doing what? Based on sequence similarity searches,
identifying the organisms encoding specific functions.
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Marker gene analysis of microbiome

Marker gene analysis of microbiome
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Marker gene analysis of microbiome

Marker gene analysis, 16S ribosomal RNA

16S ribosomal RNA (or 16S rRNA) is the component of the 30S small
subunit of a prokaryotic ribosome
The 16S rRNA sequence contains both highly conserved and variable
regions.
Conserved regions allows using universal PCR primers to amplify 16S
sequences.
Variable regions, nine in number (V1 through V9), behave like a
molecular clock and are used to classify organisms according to
phylogeny
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Marker gene analysis of microbiome

Marker gene analysis, 16S ribosomal RNA
16S rRNA sequencing has been used to characterize the complexity of
microbial communities

https://www.nature.com/nrmicro/journal/v12/n9/full/nrmicro3330.htmlMikhail Dozmorov Metagenomics Spring 2018 13 / 64
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Marker gene analysis of microbiome

Bacterial 16S rRNA sequencing workflow

Kong, Heidi H. “Skin Microbiome: Genomics-Based Insights into the Diversity and Role of Skin Microbes.” Trends in Molecular
Medicine 17, no. 6 (June 2011): 320–28. https://doi.org/10.1016/j.molmed.2011.01.013.
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Marker gene analysis of microbiome

Bacterial 16S rRNA sequencing workflow

Kong, Heidi H. “Skin Microbiome: Genomics-Based Insights into the Diversity and Role of Skin Microbes.” Trends in Molecular
Medicine 17, no. 6 (June 2011): 320–28. https://doi.org/10.1016/j.molmed.2011.01.013.
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Marker gene analysis of microbiome

Internal Transcribed Spacer marker

Genes encoding ribosomal RNA and spacers occur in tandem repeats
that are thousands of copies long, each separated by regions of
non-transcribed DNA termed intergenic spacer (IGS) or
non-transcribed spacer (NTS).
The spacer DNA situated between the small-subunit ribosomal RNA
(rRNA) and large-subunit rRNA genes

https://en.wikipedia.org/wiki/Internal_transcribed_spacer
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Marker gene analysis of microbiome

Other Marker Genes Used

Eukaryotic Organisms (protists, fungi)
18S (http://www.arb-silva.de)
ITS (Internal Transcribed Spacer,
http://www.mothur.org/wiki/UNITE_ITS_database)

Bacteria
CPN60 (Chaperonin 60, http://www.cpndb.ca/cpnDB/home.php)
ITS (Martiny, Env Micro 2009)
RecA gene (https://en.wikipedia.org/wiki/RecA)

Viruses
Gp23 capsid protein for T4-like bacteriophage
RdRp (RNA-dependent RNA polymerase) for picornaviruses
Faster evolving markers used for strain-level differentiation
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16S clustering

16S clustering
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16S clustering

OTU

OTUs (Operational taxonomic units) - groups of sequences that are
meaningfully separated from other sequences by hierarchical clustering
techniques (independent of phylogenetic inferences) and using strict
sequence identity thresholds.

16S rRNA gene sequences are routinely assigned to operational
taxonomic units (OTUs) that are then used to analyze complex
microbial communities.
The first approach has been referred to as phylotyping (Schloss &
Westcott, 2011) or closed-reference clustering (Navas-Molina et al.,
2013) - how close OTUs are to the reference sequence
Reference-based clustering methods suffer when the reference does not
adequately reflect the biodiversity of the community. If a large fraction
of sequences are novel, then they cannot be assigned to an OTU.
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16S clustering

OTU

The second approach has been referred to as distance-based (Schloss
& Westcott, 2011) or de novo clustering (Navas-Molina et al., 2013).
In this approach, the distance between sequences is used to cluster
sequences into OTUs rather than the distance to a reference database.
The computational cost of hierarchical de novo clustering methods
scales quadratically with the number of unique sequences.
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16S clustering

OTU

The third approach, open-reference clustering, is a hybrid of the
closed-reference and de novo approaches (Navas-Molina et al., 2013;
Rideout et al., 2014).
Open-reference clustering involves performing closed-reference
clustering followed by de novo clustering on those sequences that are
not sufficiently similar to the reference.
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16S clustering

Taxonomic thresholds of bacteria and archaea

Yarza, Pablo, Pelin Yilmaz, Elmar Pruesse, Frank Oliver Glöckner, Wolfgang Ludwig, Karl-Heinz Schleifer, William B. Whitman,
Jean Euzéby, Rudolf Amann, and Ramon Rosselló-Móra. “Uniting the Classification of Cultured and Uncultured Bacteria and
Archaea Using 16S RRNA Gene Sequences.” Nature Reviews Microbiology 12, no. 9 (August 14, 2014): 635–45.
https://doi.org/10.1038/nrmicro3330.
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Marker databases

Marker databases
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Marker databases

RDP Database

RDP provides quality-controlled, aligned and annotated Bacterial and
Archaeal 16S rRNA sequences, and Fungal 28S rRNA sequences, and a
suite of analysis tools to the scientific community
RDP Release 11, Update 5, September 30, 2016
3,356,809 16S rRNAs, 125,525 Fungal 28S rRNAs

http://rdp.cme.msu.edu/

Cole, James R., Qiong Wang, Jordan A. Fish, Benli Chai, Donna M. McGarrell, Yanni Sun, C. Titus Brown, Andrea
Porras-Alfaro, Cheryl R. Kuske, and James M. Tiedje. “Ribosomal Database Project: Data and Tools for High Throughput
RRNA Analysis.” Nucleic Acids Research 42, no. Database issue (January 2014): D633-642. doi:10.1093/nar/gkt1244.
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Marker databases

RDP Tools
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Marker databases

Silva Database (ARB): http://www.arb-silva.de/

Ribosomal RNA database for all three domains of live, the Bacteria,
Archaea (16S/23S), and Eukarya (18S/28S).
Contains both small subunit (SSU) and two large submunits (LSU)
sequences.
Build a Phylogenetic Tree and calculate branch length.
Browser, alignment tools, download.

Pruesse, E., C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glockner. “SILVA: A Comprehensive Online
Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB.” Nucleic Acids Research 35,
no. 21 (November 14, 2007): 7188–96. https://doi.org/10.1093/nar/gkm864.
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Marker databases

Genomes Online Database

- GOLD - a manually curated data management
system that catalogs sequencing projects with
associated metadata from around the world
- Projects are organized based on a four level
classification system: Study, Organism or
Biosample, Sequencing Project and Analysis
Project.
- As of January 2017, 26,117 Studies, 239,100
Organisms, 15,887 Biosamples, 97,212 Sequencing
Projects and 78,579 Analysis Projects.

http://www.genomesonline.org
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Marker databases

SpecI

Species identification tool based on 40 universal phylogenetic marker genes.

http://vm-lux.embl.de/~mende/specI//
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Marker databases

MetaPhlAn2

Infers the presence and read coverage of clade-specific markers to
unequivocally detect the taxonomic clades present in a microbiome
sample and estimate their relative abundance
Eukaryotic and viral quantification, in addition to bacteria and archaea
MetaPhlAn2 relies on ~1M unique clade-specific marker genes
identified from ~17,000 reference genomes (~13,500 bacterial and
archaeal, ~3,500 viral, and ~110 eukaryotic)

http://segatalab.cibio.unitn.it/tools/metaphlan2/
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Marker databases

Why MetaPhlAn?

Uses “clade-specific” gene markers
A clade represents a set of genomes that can be as broad as a phylum
or as specific as a species
Uses ~1 million markers derived from 17,000 genomes
~13,500 bacterial and archaeal, ~3,500 viral, and ~110 eukaryotic
Can identify down to the species level (and possibly even strain level)
Can handle millions of reads on a standard computer within a few
minutes
Main Disadvantage: not all reads are assigned a taxonomic label
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Marker databases

Using MetaPhlan

MetaPhlan uses Bowtie2 for sequence similarity searching (nucleotide
sequences vs. nucleotide database)
Paired-end data can be used directly (but are treated as independent
reads)
Each sample is processed individually and then multiple sample can be
combined together at the last step
Output is relative abundances at different taxonomic levels
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Marker databases

Tools for 16S ribosomal RNA analysis

http://www.annualreviews.org/doi/10.1146/annurev-genom-090711-163814
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16S sequencing issues

16S sequencing issues
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16S sequencing issues

Contamination

Extraction process can introduce contamination from the lab
Reagents may be contaminated with bacterial DNA
Include Extraction Negative Control in your experiments!
Especially crucial if samples have low DNA yield!
Host / Environment (metagenomics sequencing):
Host DNA often ends up in the microbiome sample
http://hmpdacc.org/doc/HumanSequenceRemoval_SOP.pdf
Unwanted fractions (e.g. eukaryotes) can be filtered by cell
size-selection prior to DNA extraction
Unwanted DNA can be removed by subtractive hybridization
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16S sequencing issues

Chimeras - PCR artefacts

Chimeric sequences that stem from two or more original sequences (the
parents of the chimera).
Incomplete extension of PCR, Template Switching at Conserved
Regions
Chimeras with two segments (bimeras) are most common, multimeras
(>2 segments) may form at comparable rates
Undetected chimeras may be misinterpreted as novel species, causing
inflated estimates of diversity and spurious inferences of differences
between populations.

ChimeraSlayer Detection tool, ChimeraSlayer Detection
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16S sequencing issues

Greengenes

Greengenes - a Chimera-Checked 16S rRNA Gene Database

http://greengenes.lbl.gov/Download/
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16S sequencing issues

UCHIME

- UCHIME and UCHIME2 are
algorithms for detecting chimeric
sequences
- The query sequenceis divided into
four chunks, each of which is used
to search the reference database.
- The best few hits to each chunk
are saved, and the closest two
sequences are found by calculating
smoothed identity with the query.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr381

http://drive5.com/usearch/manual/uchime_algo.html
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Metagenomics data

Metagenomics data

Mikhail Dozmorov Metagenomics Spring 2018 38 / 64



Metagenomics data

Human Microbiome Project (HMP)

A resources to facilitate characterization of the human microbiota to
further our understanding of how the microbiome impacts human
health and disease
Characterized the microbial communities from 300 healthy individuals,
across several different sites on the human body: nasal passages, oral
cavity, skin, gastrointestinal tract, and urogenital tract
16S rRNA sequencing
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Metagenomics data

Human Microbiome Project (HMP)
Longitudinally assess microbial diversity of 250 healthy subjects at 5 major
body sites

Grice, Elizabeth A., and Julia A. Segre. “The Human Microbiome: Our Second Genome.” Annual Review of Genomics and
Human Genetics 13, no. 1 (September 22, 2012): 151–70. https://doi.org/10.1146/annurev-genom-090711-163814.

Lloyd-Price, Jason, Anup Mahurkar, Gholamali Rahnavard, Jonathan Crabtree, Joshua Orvis, A. Brantley Hall, Arthur Brady, et
al. “Strains, Functions and Dynamics in the Expanded Human Microbiome Project.” Nature 550, no. 7674 (05 2017): 61–66.
https://doi.org/10.1038/nature23889.

https://commonfund.nih.gov/hmp/
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Metagenomics data

Integrative Human Microbiome Project (iHMP)

Integrative molecular perspectives on microbial activity during dysbiosis
- multi-omic data resources
Pregnancy and Preterm Birth, Inflammatory Bowel Disease, Type 2
diabetes
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Metagenomics data

iHMP multi-omics data

and more.
Integrative HMP (iHMP) Research Network Consortium. “The Integrative Human Microbiome Project: Dynamic Analysis of
Microbiome-Host Omics Profiles during Periods of Human Health and Disease.” Cell Host & Microbe 16, no. 3 (September 10,
2014): 276–89. doi:10.1016/j.chom.2014.08.014.
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Metagenomics data

curatedMetagenomicData

The curatedMetagenomicData package provides microbial taxonomic,
functional, and gene marker abundance for samples collected from
different bodysites from thousands of people
Matched health and socio-demographic data are provided
Accessible via ExperimentHub

https://bioconductor.org/packages/release/data/experiment/html/curatedMetagenomicData.html,
https://waldronlab.github.io/curatedMetagenomicData/

Pasolli, Edoardo, Lucas Schiffer, Audrey Renson, Valerie Obenchain, Paolo Manghi, Duy Tin Truong, Francesco Beghini, et al.
“Accessible, Curated Metagenomic Data through ExperimentHub,” January 27, 2017. doi:10.1101/103085.

A 6-minute video describing curatedMetagenomicData and giving a simple usage scenario,
https://www.youtube.com/watch?v=ZAbaXAQpZPE
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Metagenomics data

curatedMetagenomicData pipeline
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Metagenomics data

curatedMetagenomicData
Dataset Samples Citation

HMP_2012 749 Human Microbiome Project Consortium. Structure, function and diversity of the healthy human
microbiome. Nature 486, 207–214 (2012).

KarlssonFH_2013145 Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic
glucose control. Nature 498, 99–103 (2013).

LeChatelierE_2013292 Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature
500, 541–546 (2013).

LomanNJ_2013_Hi44 Loman, N. J. et al. A culture-independent sequence-based metagenomics approach to the
investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309, 1502–1510
(2013).

LomanNJ_2013_Mi9 Loman, N. J. et al. A culture-independent sequence-based metagenomics approach to the
investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309, 1502–1510
(2013).

NielsenHB_2014396 Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex
metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

Obregon_TitoAJ_201558 Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes.
Nat Commun 6, 6505 (2015).

OhJ_2014 291 Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature
514, 59–64 (2014).

QinJ_2012 363 Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature
490, 55–60 (2012).

QinN_2014 237 Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).
RampelliS_201538 Rampelli, S. et al. Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Curr.

Biol. 25, 1682–1693 (2015).
TettAJ_2016 97 Ferretti, P. et al. Experimental metagenomics and ribosomal profiling of the human skin

microbiome. Exp. Dermatol. (2016). doi:10.1111/exd.13210
ZellerG_2014 156 Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol.

Syst. Biol. 10, 766 (2014).
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Metagenomics data

phyloseq R package

High-level analysis of processed metagenomic sequencing data
Support for various file formats, clustering, dimensionaliry reduction,
visualization
Differential analysis

https://www.bioconductor.org/packages/release/bioc/html/phyloseq.html, https://joey711.github.io/phyloseq/

McMurdie, Paul J., and Susan Holmes. “Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of
Microbiome Census Data.” PloS One 8, no. 4 (2013): e61217. https://doi.org/10.1371/journal.pone.0061217.
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Whole-sample microbiome sequencing

Whole-sample microbiome sequencing

Mikhail Dozmorov Metagenomics Spring 2018 47 / 64



Whole-sample microbiome sequencing

16S vs Metagenomics

16S is targeted sequencing of a single gene which acts as a marker for
identification

Pros

Well established
Sequencing costs are relatively cheap (~50,000 reads/sample)
Only amplifies what you want (no host contamination)

Cons

Primer choice can bias results towards certain organisms
Usually not enough resolution to identify to the strain level
Need different primers usually for archaea & eukaryotes (18S)
Doesn’t identify viruses
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Whole-sample microbiome sequencing

Metagenomics: sequencing all the DNA in a sample

Pros

No primer bias
Can identify all microbes (euks, viruses, etc.)
Provides functional information (“What are they doing?”)

Cons

More expensive (millions of sequences needed)
Host/site contamination can be significant
May not be able to sequence “rare” microbes
Complex bioinformatics
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Whole-sample microbiome sequencing

Metagenomics: Who is there?

Goal: Identify the relative abundance of different microbes in a sample
given using metagenomics

Problems:

Reads are all mixed together
Reads can be short (~100bp)
Lateral gene transfer

Two broad approaches

Binning Based
Marker Based
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Whole-sample microbiome sequencing

How many reads?

Initial estimates:

1,000 as a bare minimum, now obsolete, current sequencing procudes
enough reads

Now:

Illumina MiSeq generates 2x300 bp paired end for amplicon and
bacterial whole-genome sequencing.
HiSeq generates 200,000,000 reads/lane for metagenomics.
PacBio for long reads both for complete microbial genome assembly
and shotgun metagenomics to scaffold reads.
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Whole-sample microbiome sequencing

LCA: Lowest Common Ancestor

Use all BLAST hits above a threshold and assign taxonomy at the lowest
level in the tree which covers these taxa.

Software Examples:

MEGAN: http://ab.inf.uni-tuebingen.de/software/megan6/
One of the first metagenomic tools
Does functional profiling too!

MG-RAST: https://metagenomics.anl.gov/
Web-based pipeline (might need to wait awhile for results)

Kraken: https://ccb.jhu.edu/software/kraken/
Fastest binning approach to date and very accurate.
Large computing requirements (e.g. >128GB RAM)
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Whole-sample microbiome sequencing

Bacterial genome assembly

How to Assemble a Bacterial Genome: Gram-negative is ~6,000,000
base pair
Shotgun sequence 2x300 bp fragments on Illumina MiSeq at 30-fold
redundancy.
Overlapping reads form large DNA contigs with N50 of ~100 kb.
Or very low coverage (3-5X) just to define species and strain
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Whole-sample microbiome sequencing

Assemblers (de novo)

Phrap
Celera
Velvet
SPAdes
mira
MaSuRCA
ALL-PATHS
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Whole-sample microbiome sequencing

Velvet (Zerbino and Birney, 2008)

Works in base-space and color-space
Good for small genomes
Agnostic of read length

1 Construct k-mer hash
2 Build De Bruijn graph
3 Simplify graph
4 Resolve Tips and Bubbles
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Whole-sample microbiome sequencing

PICRUSt: Phylogenetic Investigation of
Communities by Reconstruction of Unobserved
States
PICRUSt (pronounced “pie crust”) is a bioinformatics software package
designed to predict metagenome functional content from marker gene (e.g.,
16S rRNA) surveys and full genomes.

https://picrust.github.io/picrust/
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Whole-sample microbiome sequencing

STAMP - metagenomics visualization software

STAMP is a graphical software package that provides statistical
hypothesis tests and exploratory plots for analysing taxonomic and
functional profiles.
It supports tests for comparing pairs of samples or samples organized
into two or more treatment groups. Effect sizes and confidence
intervals are provided to allow critical assessment of the biological
relevancy of test results.
A user-friendly graphical interface permits easy exploration of
statistical results and generation of publication-quality plots.

http://kiwi.cs.dal.ca/Software/STAMP

Parks, Donovan H., Gene W. Tyson, Philip Hugenholtz, and Robert G. Beiko. “STAMP: Statistical Analysis of Taxonomic and
Functional Profiles.” Bioinformatics (Oxford, England) 30, no. 21 (November 1, 2014): 3123–24.
https://doi.org/10.1093/bioinformatics/btu494.
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Whole-sample microbiome sequencing

Metatranscriptomics - microbial gene expression

Challenges:

Lack of a polyA signal makes it difficult to isolate bacterial mRNA and
resulting in (massive) rRNA contamination
Environmental microbiome samples lack reference genomes making it
difficult to map reads back to their source transcripts
~5 million mRNA reads provide 90-95% of expression context in a
microbiome
With kits yielding mRNA read rates of ~25%, this suggests 20
million/sample mRNA
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Analysis considerations

Normalization

Total-sum scaling (TSS) - Divides feature read counts (the number
of reads from a particular sample that cluster within the same OTU) by
the total number of reads in each sample, i.e., it converts feature
counts to appropriately scaled ratios.

M(m, n) - a count matrix, where m and n are the number of taxonomic
features and samples, respectively
ci,j - the number of times taxonomic feature i was observed in sample j .
sj =

∑
i(ci,j) - sum of counts for sample i

cnorm
i,j = ci,j/sj - Total-sum scaling normalization
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Analysis considerations

Normalization

Cumulative-sum scaling (CSS) - raw counts are divided by the
cumulative sum of counts up to a percentile determined using a
data-driven approach, e.g., the 75th percentile of each sample’s
nonzero count distribution.

ql
j - l th quantile of sample j

s l
j =

∑
i|ci,j≤ql

j
(ci,j) - the sum of counts for sample j up to the l th

quantile
cnorm

i,j = (ci,j/s l
j )N - Cumulative-sum scaling, N is an appropriately

chosen normalization constant

Paulson, Joseph N, O Colin Stine, Héctor Corrada Bravo, and Mihai Pop. “Differential Abundance Analysis for Microbial
Marker-Gene Surveys.” Nature Methods 10, no. 12 (September 29, 2013): 1200–1202. https://doi.org/10.1038/nmeth.2658.
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Analysis considerations

Differential analysis

Microbiome sequencing, unlike RNA-seq, is very sparse - most OTUs in
marker-gene studies are rare (that is, absent from a large number of
samples).
This sparsity is due to both biological and technical phenomena: some
organisms are found in only a small percentage of samples, whereas
others are simply not detected owing to insufficient sequencing depth.
These phenomena can lead to strong biases when data sets are scaled
for comparison and when sequence read counts are tested for
significant differences.
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Analysis considerations

Differential analysis

Solution: a zero-inflated Gaussian (ZIG) distribution mixture model
that accounts for biases in differential abundance testing resulting from
undersampling of the microbial community
The components of the mixture model correspond to normally
distributed log abundances in each group of interest: for example, case
or control, and a spike-mass at 0 indicating absence of the feature
owing to undersampling
The model estimates the probability that an observed zero is generated
from the detection distribution due to undersampling or from the
actual absense of the feature. EM algorithm.
metagenomeSeq - Statistical analysis for sparse high-throughput
sequencing, https://bioconductor.org/packages/release/bioc/html/
metagenomeSeq.html

Paulson, Joseph N, O Colin Stine, Héctor Corrada Bravo, and Mihai Pop. “Differential Abundance Analysis for Microbial
Marker-Gene Surveys.” Nature Methods 10, no. 12 (September 29, 2013): 1200–1202. https://doi.org/10.1038/nmeth.2658.
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Analysis considerations

Latest development

ATLAS - a
framework for
assembly, annotation,
and genomic binning
of metagenomic and
metatranscriptomic
data.

https://github.com/pnnl/atlas

https://pnnl-atlas.readthedocs.io/en/latest/
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