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Single cell sequencing applications

@ Infer cell lineages

o ldentify subpopulations

@ Outline temporal evolution

@ Define cell-specific biological characteristics, e.g., differentially
expressed genes
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Single-cell Sequencing Technology
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A single device has three input ports (oil, barcoded beads in lysis buffer, and
cells of interest) and a single output port used for collecting
bead—cell-containing lipid droplets. Then each cell (or RNA in the cell) is
marked by the unique barcode and processed on the bead for sequencing
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How does single-cell data differ from bulk RNA-seq

@ Even with the most sensitive platforms, the data are relatively sparse
owing to a high frequency of dropout events (lack of detection of
specific transcripts)

@ The numbers of expressed genes detected from single cells are typically
lower compared with population-level ensemble measurements

@ The commonly used ‘reads per kilobase per million’ (RPKM) transcript
quantification is biased on a single-cell level, at the very least the
‘transcripts per million’ (TPM) should be used
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How does single-cell data differ from bulk RNA-seq

@ scRNA-seq data, in general, are much more variable than bulk data
@ Distributions of transcript quantities are often more complex in

single-cell datasets than in bulk RNA-seq - negative binomial or
multimodal distributions
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Multimodal distribution of variance

Density

https://genomebiology.biomedcentral.com /articles/10.1186 /s13059-016-0927-y
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Filtering

@ Filter cells and/or genes

@ No single consensus, frequently used criteria include:
o relative library size
e number of detected genes

e fraction of reads mapping to mitochondria-encoded genes or synthetic
spike-in RNAs
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Correlation with regular RNA-seq data

Spearman r = 0.894
Pearson r = 0.870

Bulk RNA gene expression (median FPKM, log,) Q)
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https://www.nature.com/nmeth /journal /v11/n1/full /nmeth.2694.html
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scRNA-seq design considerations

Same as for RNA-seq:

@ Randomize batch effects

@ Spike-ins (debatable), or unique molecular identifiers (UMls)

@ Record all sources of variability, check for confounding with the main
effect

Low amount of starting material

@ ~500,000 to 1M reads per cell (sometimes less (~50,000) reads is
sufficient for cell classification [Pollen AA et.al. Nat. Biotechnol.
2014]) vs. 20-30M reads in bulk RNA-seq
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Single cell workflow
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Noise in scRNA-seq
@ Technical noise can be approximated with Poisson distribution

@ Low-read count genes show strong noise and high—read count genes
show weak noise
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Figure 1 | Dilution series of total A. thaliana RNA. (a-d) Experiments
with 5,000 pg (a), 500 pg (b), 50 pg (c) and 10 pg (d) of total RNA.
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Drop-out rate

@ Depends on the expected expression magnitude
@ Genes with lower expression magnitude are more likely to be affected
by dropout than genes that are expressed with greater magnitude
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Normalization

Ideally, normalize for

@ capture efficiency

@ amplification biases

@ GC content

@ Differences in total RNA content

@ sequencing depth (that's what is done in reality)
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Global-scaling normalization

Assumption Throughout the experiment In practice
Gene-specific effect Capture and Dilution Normalized  Estimated
‘expression level’ RT fraction factor expression scaling factor

A A A A A

E(X)=s,x 1 s = x F x A x D x R X = x 18

v v v v v
Cell-specific effect Endogenous Amplification Sequencing Raw
‘scaling factor’ mRNA content factor depth read count

v

Ignores gene-specific
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Uncertainty in the

biases (GC content, = === === estimation of scaling
transcript length) Capture Amplification Dilution  Sequencing factors is not propagated
and RT

Vallejos, Catalina A, Davide Risso, Antonio Scialdone, Sandrine Dudoit, and John C Marioni. “Normalizing Single-Cell RNA
Sequencing Data: Challenges and Opportunities.” Nature Methods 14, no. 6 (May 15, 2017): 565-71.
https://doi.org/10.1038 /nmeth.4292.
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Between-sample normalization

TPM or RPKM/FPKM (within-cell normalization) is insufficient -
between-sample normalization is needed

@ Median normalization - identify relatively stable genes to calculate
global scaling factors (one for each cell, common across genes in the

cell)
@ Spike-in based normalization - estimate global rescaling factors from

known spike-in concentration
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Spike-in sequences and normalization

@ A set of RNA standards for RNA-seq

e 92 polyadenylated transcripts that mimic natural eukaryotic mRNAs

o Designed to have a wide range of lengths (250-2,000 nucleotides) and
GC-contents (5-51%) and can be spiked into RNA samples before library
preparation at various concentrations (106-fold range)

@ External RNA Control Consortium (ERCC) spike-in controls can be
used for normalization in the context of a global expression shift

o Count the number of cells in each sample

o Add the ERCC spike-in sequences to each sample in proportion to the
number of cells

o Normalize read counts based on cyclic loess robust local regression on
the spike-in counts

Baker, S.C. et al. The external RNA controls consortium: a progress report. Nat. Methods 2, 731-734 (2005).
Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543-1551 (2011).

Loven, J. et al. Revisiting global gene expression analysis. Cell 151, 476-482 (2012).
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SCnorm - normalization for single-cell data

@ Quantile regression to estimate the dependence of transcript expression
on sequencing depth for every gene

@ Genes with similar dependence are then grouped, and a second quantile
regression is used to estimate scale factors within each group

@ Within-group adjustment for sequencing depth is then performed using
the estimated scale factors to provide normalized estimates of
expression

https://www.biostat.wisc.edu/~kendzior/SCNORM/
Bacher, Rhonda, Li-Fang Chu, Ning Leng, Audrey P Gasch, James A Thomson, Ron M Stewart, Michael Newton, and Christina

Kendziorski. “SCnorm: Robust Normalization of Single-Cell RNA-Seq Data.” Nature Methods 14, no. 6 (April 17, 2017):
584-86. https://doi.org/10.1038/nmeth.4263.
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ZINB-WaVE

@ Zero-inflated negative binomial model for normalization, batch removal

and dimensionality reduction
@ Extends the RUV model with more careful definition of “unwanted”

variation as it may be biological
https://bioconductor.org/packages/release/bioc/html/zinbwave.html

Davide Risso et al., “ZINB-WaVE: A General and Flexible Method for Signal Extraction from Single-Cell RNA-Seq Data,”
BioRxiv, January 1, 2017, https://doi.org/10.1101/125112.
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ZINB-WaVE

Jgenes

log u
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random
variable
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e uj = E[Yj|Z; =0,X,V, W]
e Y is the count of gene j (j =1,
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X intercept acts as a gene-specific scaling factor

Known gene-level covanates Unknown sample -level covanates

Unknown Observed Unobserved Unknown
parameter random random parameter
variable variable

V intercept acts as a sample-specific scaling factor

) forcelli(i=1,...,n)

e Zj an unobserved indicator variable, equal to one if gene j is a dropout

in cell i and zero otherwise

o m = Pr(Z; =1|X,V,W)
@ Model In(p) and logit(m) with the regression as shown. Both models
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ZINB-WaVE

@ PMF of the negative binomial distribution with mean p and inverse
dispersion parameter 0

ooy Ty +0) 0 "\ (n
fnp(y: p,0) = My +1)r() <9+M ) (M+9 )

e lts variance 0% = 1 + "g = 1+ ¢u?, given the dispersion parameter
# =01 (when ¢ = 0, NB = Poisson)

@ The PMF fo the zero-inflated negative binomial. For any 7 € [0,1] -
the probability that a 0 is ovserved instead of the actual counts - we
have an inflation of zeros compared to the NB distribution

fzing(y; i, 0, m) = moo(y) + (1 — m)fug(y;i 1, 0)

do(.) is the Dirac function
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ZINB-WaVE

Estimate the parameters from the following regression models:
In(pij) = (XByu + (VT)) T + Way + 04)iy

7T,"j

logit(m; ;) = In( ) = (XBu + (VTL))T + Wa, + 0,);

7[',"]'

In(0;) = ¢

C is a vector of gene-specific dispersion parameters
https://bioconductor.org/packages/release/bioc/html/zinbwave.html

Davide Risso et al., “ZINB-WaVE: A General and Flexible Method for Signal Extraction from Single-Cell RNA-Seq Data,”
BioRxiv, January 1, 2017, https://doi.org/10.1101/125112.
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Sub-population identification

Standard methods used in RNA-Seq

@ Hierarchical clustering, PCA, tSNE of highly variable, or
differentially expressed, genes. Zeros can be a problem
@ ZIFA - Zero-inflated dimensionality reduction algorithm for single-cell

data
@ SNN-Cliq - A clustering method for high dimensional dataset.

Rank-based (not expression) similarity

https://github.com /epierson9/ZIFA
http://bioinfo.uncc.edu/SNNClig/

Many more at https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0927-y
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Differentially expressed genes

@ Need to accomodate unobserved dropouts, bimodality in expression
levels due to abundance of zero or low values (MAST, SCDE)

@ scDD - Distinguishes four types of differential expression changes to
increase power:

shifts in unimodal distribution

differences in the number of modes

differences in the proportion of cells within modes
combination of the previous two

https://github.com /kdkorthauer/scDD
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SCDE - a Bayesian approach to single-cell
differential expression detection

@ A two-component mixture model to capture drop-out events (modeled
by low-magnitude Poisson) and events where a transcript is faithfully
amplified (Negative Binomial)

@ Incorporates evidence from other cells to estimate both the likelihood
of a gene being expressed in each subpopulation of cells and the
likelihood of expression fold change between them

https://hms-dbmi.github.io/scde/index.html

Kharchenko, Peter V., Lev Silberstein, and David T. Scadden. “Bayesian Approach to Single-Cell Differential Expression
Analysis." Nature Methods 11, no. 7 (July 2014): 740-42. https://doi.org/10.1038/nmeth.2967.
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SCDE - a Bayesian approach to single-cell
differential expression detection

The posterior probability of a gene being expressed at an average level x in
a subpopulation of cells S is determined as an expected value (E) as:

ceB

pS(X) =E |:H p(X|rCan)

where B is a bootstrap sample of S, and p(x|rc, Qc) is the posterior
probability for a given cell ¢, as:

p(X|I’C, QC) = pd(X)pPoisson(X) + (1 - pd(X))pNB(X|rc)

where py is the probability of obseerving a dropout event, ppoisson(Xx) and

pna(x|re) are the probabilities of observing expression magnitude of rc in

case of a dropout (Poisson) or successful amplification (NB) for a gene
B T T Y



SCDE - a Bayesian approach to single-cell
differential expression detection

@ For the differential expression analysis, the posterior probability that
the gene shows a fold expression difference of f between
subpopulations S and G was evaluated as:

p(f) =" ps(x)pc(fx)

xeX

where x is the valid range of expression levels
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MAST: a flexible statistical framework for assessing
transcriptional changes and characterizing
heterogeneity in single-cell RNA sequencing data

@ A two-part generalized linear model (hurdle model) explicitly
parameterizing expressed and non-detectable gene distributions

@ Includes as a covariate the fraction of genes that are detectably
expressed in each cell as a proxy for both technical and biological
sources of variation (CDR). For cell i, CRD; =1/N 22/:1 Zjg, Where
Zjg is an indicator if gene g in cell i is expressed above background

@ The expression measure of a detected gene is modeled by linear
regression and the probability of detection by logistic regression

https://github.com/RGLab/MAST
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Pseudotemporal ordering

@ Idea - cells at different differentiation (or other biological process)
stage are presented with different expression profiles

@ Dynamics of cellular processes can be reconstructed from expression
profiles

@ Key assumption: genes do not change direction very often, thus
samples with similar transcriptional profiles should be close in order

@ Most approaches are dimensionality reduction-based, and apply graph
theory designed to traverse nodes in a graph efficiently

@ Monocle - Independent component analysis, then a minimum
spanning three through the dimension-reduced data

https://cole-trapnell-lab.github.io/monocle-release/

Many more at https://github.com/agitter/single-cell- pseudotime
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Monocle, An analysis toolkit for single-cell RNA-seq

Single-cell trajectories, clustering, visualization, differential expression

Cells represented as

points in expression space Reduce dimensionality Build MST on cells
®
L
—> (] —>
[
[}
Label cells by type Order cells in pseudotime
via MST
Differentially expressed Y
genes by cell type e e
Differentially expressed ® <

genes across pseudotime

Gene expression
clusters and trends

https://cole-trapnell-lab.github.io/monocle-release/
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|
Slingshot

@ Inferring multiple developmental lineages from single-cell gene
expression

@ Clustering by gene expression, then inferring cell lineage as an ordered
set of clusters - minimum spanning tree through the clusters using
Mahalanobis distance

@ Initial state and terminal state specification

@ Principal curves to draw a path through the gene expression space of
each lineage

https://github.com/kstreet13/slingshot

Mikhail Dozmorov Single-cell RNA-seq Spring 2018 32 /34


https://github.com/kstreet13/slingshot

Single-cell network analysis

@ SCENIC R package - single-cell network reconstruction and cell-state
identification. Three modules:

@ GENIE3 - Connect co-expressed genes and TFs using random forest
regression;

© RcisTarget - Refine them using cis-motif enrichment;

© AUCell - assign activity scores for each network in each cell type.
Aibar, Sara, Carmen Bravo Gonzalez-Blas, Thomas Moerman, Van Anh Huynh-Thu, Hana Imrichova, Gert Hulselmans, Florian
Rambow, et al. “SCENIC: Single-Cell Regulatory Network Inference and Clustering.” Nature Methods 14, no. 11 (November
2017): 1083-86. https://doi.org/10.1038/nmeth.4463.
https: //gbiomed.kuleuven.be/english/research /50000622 /Icb /tools /scenic
https://github.com/aertslab/SCENIC
https://github.com /aertslab/GENIE3

https://github.com/aertslab/AUCell
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ZIFA - dimensionality reduction for zero-inflated

@ Given the mean level of non-zero expression (log read count) u and the
dropout rate for that gene pg, model the dropout as pg = exp(—Au?),
where A is a fitted parameter, based on a double exponential function

@ EM algorithm that incorporates imputation step for the expected gene
expression level of drop-outs

https://github.com /epierson9/ZIFA

Pierson, Emma, and Christopher Yau. “ZIFA: Dimensionality Reduction for Zero-Inflated Single-Cell Gene Expression Analysis.”
Genome Biology 16 (November 2, 2015): 241. https://doi.org/10.1186/s13059-015-0805-z.
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