ChIP-seq

Mikhail Dozmorov

Spring 2018
Outline

Introduction to ChIP-seq experiment

- Biological motivation
- Experimental procedure

Methods and software for ChIP-seq peak calling

- Protein binding ChIP-seq
- Histone modifications

Higher order ChIP-seq data analysis

- Peak/motif detection
- Differential binding
- Correlate with other data such as RNA-seq
Transcription factors regulate gene expression

- Transcription factors are proteins that bind to specific DNA sequences and act as regulators of gene expression.
- Humans have ~2,000 transcription factors.

https://en.wikipedia.org/wiki/DNA-binding_protein
Gene Regulation: DNA -> RNA -> Protein

- What are the transcription factors (TFs) that control gene expression?
- At what genes do these TFs operate?
- Understanding transcriptional regulatory network will
 - Reveal how cellular processes are connected and coordinated
 - Suggest new strategies to manipulate phenotypes and combat disease
ChIP-seq big picture

Combine high-throughput sequencing with Chromatin Immunoprecipitation to identify specific protein-DNA interactions genome-wide, including those of:

- Transcription factors
- Histones (various types and modifications)
- RNA Polymerase (survey of transcription)
- DNA polymerase (investigate DNA replication)
- DNA repair enzymes
- Fragments of DNA that are modified (e.g. methylated)
Experimental procedures

1. **Crosslink**: fix proteins on Isolate genomic DNA.
2. **Sonicate**: cut DNA in small pieces of ~200bp.
3. **Immunoprecipitate (IP)**: use antibody to capture DNA segments with specific proteins.
4. **Reverse crosslink**: remove protein from DNA.
5. **Sequence** the DNA segments.
ChIP-seq overview

DNA + bound protein

Fragment DNA

Immunoprecipitate

Map sequence tags to genome & identify peaks

Sequence

Prepare sequencing library

Release DNA

CHROMOSOMAL DNA

H3K4me3
ChIP-Seq
ChIP-chip

H3K27me3
ChIP-Seq
ChIP-chip
Advantages of ChIP-seq over ChIP-chip

<table>
<thead>
<tr>
<th></th>
<th>ChIP–chip</th>
<th>ChIP–seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum resolution</td>
<td>Array-specific, generally 30–100 bp</td>
<td>Single nucleotide</td>
</tr>
<tr>
<td>Coverage</td>
<td>Limited by sequences on the array; repetitive regions are usually masked out</td>
<td>Limited only by alignability of reads to the genome; increasing with read length; many repetitive regions can be covered</td>
</tr>
<tr>
<td>Cost</td>
<td>US$400–800 per array (1–6 million probes); multiple arrays may be needed for large genomes</td>
<td>Currently US$1,000–2,000 per lane (using the Illumina Genome Analyzer); 6–15 million reads before alignment</td>
</tr>
<tr>
<td>Source of platform noise</td>
<td>Cross-hybridization between probes and nonspecific targets</td>
<td>Some GC bias can be present</td>
</tr>
<tr>
<td>Experimental design</td>
<td>Single- or double-channel, depending on the platform</td>
<td>Single channel</td>
</tr>
<tr>
<td>Cost-effective cases</td>
<td>Profiling of selected regions; when a large fraction of the genome is enriched for the modification or protein of interest (broad binding)</td>
<td>Large genomes; when a small fraction of the genome is enriched for the modification or protein of interest (sharp binding)</td>
</tr>
<tr>
<td>Required amount of ChIP DNA</td>
<td>High (a few micrograms)</td>
<td>Low (10–50 ng)</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>Lower detection limit; saturation at high signal</td>
<td>Not limited</td>
</tr>
<tr>
<td>Amplification</td>
<td>More required</td>
<td>Less required; single-molecule sequencing without amplification is available</td>
</tr>
<tr>
<td>Multiplexing</td>
<td>Not possible</td>
<td>Possible</td>
</tr>
</tbody>
</table>
How many sequences are needed to find ChIP-seq peaks?

- Effective analysis of ChIP-seq data requires sufficient coverage by sequence reads (sequencing depth)
- The required depth depends mainly on the size of the genome and the number and size of the binding sites of the protein
- For mammalian transcription factors (TFs) and chromatin modifications such as enhancer-associated histone marks, which are typically localized at specific, narrow sites and have on the order of thousands of binding sites, 20 million reads may be adequate (4 million reads for worm and fly TFs)
- Proteins with more binding sites (e.g., RNA Pol II) or broader factors, including most histone marks, will require more reads, up to 60 million for mammalian ChIP-seq

Data from ChIP-seq

- Raw data: sequence reads
- After alignments: genome coordinates (chromosome/position) of all reads
- Often, aligned reads are summarized into “counts” in equal sized bins genome-wide:
 1. Segment genome into small bins of equal sizes (e.g., 50bp)
 2. Count number of reads started at each bin
- Alternatively, consider counts in the regions of interest, e.g., promoters of protein-coding genes (2,000bp upstream and 500bp downstream of transcription start site)
Methods and software for ChIP-seq peak/block calling
ChIP-seq analysis workflow

1. Experiment planning (sequencing depth)
2. Quality metrics of sequence reads
3. Read mapping
4. Quality metrics of read counts (strand cross-correlation)
5. Peak calling (FDR, p-value, q-value cut-off)
6. Assessment of reproducibility for biological replicates (PCC, IDR)

M treatment conditions

- M = 1
 - Significant and reproducible ChIP-seq peaks
 - Differential binding analysis
 - Differentially bound sites
 - Downstream analysis (peak annotation, motif analysis)
- M > 1

Spring 2018
ChIP-seq “peak” detection

- When plot the read counts against genome coordinates, the binding sites show a tall and pointy peak. So “peaks” are used to refer to protein binding or histone modification sites.

- Peak detection is the most fundamental problem in ChIP-seq data analysis.
Peak calling: a classic signal versus noise problem

Simple ideas for peak detection

- Peaks are regions with reads clustered, so they can be detected from binned read counts
- Counts from neighboring windows need to be combined to make inference (so that it’s more robust)
- To combine counts:
 - Smoothing based: moving average (MACS, CisGenome), HMM-based (Hpeak)
 - Model clustering of reads starting position (PICS, GPS)
- Moreover, some special characteristics of the data can be incorporated to improve the peak calling performance
Before peak detection: what do we know about ChIP-seq?

- Artifacts need to be considered
 - DNA sequence: can affect amplification process or sequencing process
 - Chromatin structure (e.g., open chromatin region or not): may affect the DNA sonication process.
 - A control sample is necessary to correct artifacts
- Reads clustered around binding sites to form two distinct peaks on different strands
- Alignment issue: mappability
Control sample is important

- A control sample is necessary for correcting many artifacts: DNA sequence dependent artifacts, chromatin structure, repetitive regions, etc.
- Importantly, control samples should be sequenced significantly deeper than the ChIP ones in a TF experiment and in experiments involving diffused broad-domain chromatin data. This is to ensure sufficient coverage of a substantial portion of the genome and non-repetitive autosomal DNA regions.
There are three commonly used types of control sample:

1. **Input DNA** (a portion of the DNA sample removed prior to immunoprecipitation (IP))
2. **Mock IP DNA** (DNA obtained from IP without antibodies)
3. **DNA from nonspecific IP** (IP performed using an antibody, such as immunoglobulin G, against a protein that is not known to be involved in DNA binding or chromatin modification)
Mappability

- For each basepair position in the genome, whether a 35 bp sequence tag starting from this position can be uniquely mapped to a genome location.
- Regions with low mappability (highly repetitive) cannot have high counts, thus affect the ability to detect peaks.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Genome size (Mb)</th>
<th>Nonrepetitive sequence</th>
<th>Mappable sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Size (Mb)</td>
<td>Percentage</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>100.28</td>
<td>87.01</td>
<td>86.8%</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>168.74</td>
<td>117.45</td>
<td>69.6%</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>2,654.91</td>
<td>1,438.61</td>
<td>54.2%</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>3,080.44</td>
<td>1,462.69</td>
<td>47.5%</td>
</tr>
</tbody>
</table>

How do peak-finders map binding sites?

- Fragments contain the TF binding site at a (mostly) random position within them.
- Reads are randomly generated from left or right edges (sense or antisense) of fragments.
- Binding site position = mid-way between sense tag peak and antisense tag peak.
- To get binding site peak, shift sense downstream by $\frac{1}{2}$ fragsize & antisense upstream by $\frac{1}{2}$ fragsize.

Strand cross-correlation

- A high-quality ChIP-seq experiment often shows a significant clustering of enriched DNA sequence tags at the locations bound by the protein.
- The enriched sequence tags on the forward and reversed strands are positioned at a distance from the binding site center that depends on the fragment size distribution.
- The cross-correlation between the two strands, i.e., the Pearson correlation between the strand-specific read density profiles as a function of the shift \((k)\) applied to one of the two strands.

Regions to watch out for abnormal peaks

- **Centromeres** - “acen” regions from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz
- **ENCODE blacklisted regions** - https://sites.google.com/site/anshulkundaje/projects/blacklists
Peak detection software

See http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003326#s5 for full table

<table>
<thead>
<tr>
<th>Software tool</th>
<th>Version</th>
<th>Availability</th>
<th>Point-source (peaks)</th>
<th>Broad regions (domains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAT [91]</td>
<td>3</td>
<td>http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CisGenome [56]</td>
<td>2</td>
<td>http://www.biostat.jhsph.edu/~hji/cisgenome/</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>dPeak</td>
<td>0.9.9</td>
<td>http://www.stat.wisc.edu/~chungdon/dpeak/</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>HPeak [87]</td>
<td>2.1</td>
<td>http://www.sph.umich.edu/csg/qin/HPeak/</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MACS [17]</td>
<td>2.0.10</td>
<td>https://github.com/taoliu/MACS/</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NarrowPeaksa</td>
<td>1.4.0</td>
<td>http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PeakAnalyzer/</td>
<td>1.4</td>
<td>http://www.bioinformatics.org/peakanalyzer</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PeakSplitter [89]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PeakSeq [24]</td>
<td>1.1</td>
<td>http://info.gersteinlab.org/PeakSeq</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>polyaPeak</td>
<td>0.1</td>
<td>http://web1.sph.emory.edu/users/hwu30/polyaPeak.html</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RSEG [92]</td>
<td>0.6</td>
<td>http://smithlab.usc.edu/histone/rseg/</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SICER [90]</td>
<td>1.1</td>
<td>http://home.gwu.edu/~wpeng/Software.htm</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

a Only for post-processing.
Peak detection

- Calculate read count at each position (bp) in genome. Don’t use a sliding window
- Determine if read count is greater than expected (at each position, bp)
- We need to correct for input DNA reads (control)
 - non-uniformly distributed
 - vastly different numbers of reads between ChIP and input
The Poisson distribution: discrete distribution to model coverage

- $P(k \text{ discrete events}) = \frac{\lambda^k e^{-\lambda}}{k!}$ Where e is Euler’s constant (2.718), and λ is the average number of occurrences of an event
- Example: the “hundred year flood”. Thus $\lambda = 1$ (1 catastrophic flood every 100 years)

https://en.wikipedia.org/wiki/Poisson_distribution
Poisson distribution with different values of λ
Is the observed read count at a given genomic position greater than expected?

Read counts follow a Poisson distribution

\[P(X \geq x) = 1 - \sum_{0}^{x-1} \frac{\lambda^x e^{-\lambda}}{x!} \]

- \(x \) - observed read count
- \(\lambda \) - expected read count

Example:

- \(x = 10 \) reads, observed
- \(\lambda = 0.5 \) reads, expected
- \(P(X \geq 10) = 1.7 \times 10^{-10} \)
- \(-\log_{10} P(X \geq 10) = 9.77 \)
- In R, \(P(X \geq 10 | \lambda = 0.5) \) is 1 - \(\text{sum(dpois(0:9, 0.5))} \)
Is the observed read count at a given genomic position greater than expected?

\[P_c(X \geq x) = 1 - \sum_{0}^{x-1} \frac{\lambda_c^x e^{-\lambda_c}}{x!} \]

Expected read count = total number of reads * extended frag len / chr len
Is the observed read count at a given genomic position greater than expected?

\[P_c(X \geq x) = 1 - \sum_{0}^{x-1} \frac{\lambda_c^x e^{-\lambda_c}}{x!} \]

\[P_i(X \geq x) = 1 - \sum_{0}^{x-1} \frac{\lambda_i^x e^{-\lambda_i}}{x!} \]

\[[-\log(P_c)] - [-\log(P_i)] \]
Normalized Peak score at each bp

\[R = -\log_{10} \frac{P(X_{\text{ChIP}})}{P(X_{\text{Input}})} \]

Will detect peaks with high read counts in ChIP, low in Input

Works when no input DNA \((X_{\text{Input}} = 0)\)

\[P(X \geq x) = 1 - \sum_{0}^{x-1} \frac{\lambda^x e^{-\lambda}}{x!} \]
Ideally, sequencing coverage will follow a Poisson distribution. But...

- Negative binomial fits sequencing coverage data much better

[Image: Two histograms showing Poisson and non-Poisson distributions with IQR annotations]

MACS (Model-based Analysis of ChIP-Seq)

Written in Python, runs in command line. `macs14 -t sample.bed -c control.bed -n result`

http://liulab.dfci.harvard.edu/MACS/index.html

MACS (Model-based Analysis of ChIP-Seq)

- Estimate shift size of reads d from the distance of two modes from $+$ and $-$ strands.
- Shift all reads toward 3’ end by $d/2$.
- Use a dynamic Posisson model to scan genome and score peaks.
 - Counts in a window are assumed to following Poisson distribution with rate: $\lambda_{\text{local}} = \max(\lambda_{BG}, \lambda_{1K}, \lambda_{5K}, \lambda_{10K})$ where λ_{1K}, λ_{5K} and λ_{10K} are λ estimated from the 1 kb, 5 kb or 10 kb window centered at the peak location in the control samples and call peaks.
- FDR estimates from sample swapping: flip the IP and control samples and call peaks. Number of peaks detected under each p-value cutoff will be used as null and used to compute FDR
 - The number of “negative” peaks should be \sim10 times less
MACS fine tuning

MACS can’t build a model:

- Adjust the *mfold* values (the fold over background ranges MACs considers for paired peaks)
- Tell MACS to not build a model, but instead use the shiftsize you specify.

Peaks/Negative Peaks ratio is poor or too few peaks are detected:

- Adjust model settings to see if you can improve both. Otherwise, you may have to conclude that 1) your library was no good or 2) the factor just doesn’t bind to many places in the genome
Consider mappability: PeakSeq

- Two-pass analysis. First round - detect possible peak regions by identifying threshold while considering mappability
 - Cut genome into segments ($L = 1\, \text{Mb}$). Within each segment, the same number of reads are permuted in a region of $f \times L$, where f is the proportion of mappable bases in the segment

Rozowsky et al. (2009) NBT https://www.nature.com/nbt/journal/v27/n1/full/nbt.1518.html
Consider mappability: PeakSeq

- Second round analysis
 - Normalize data by counts in background regions
 - Test significance of the peaks identified in first round by comparing the total count in peak regions with control data, using binomial p-value with Benjamini-Hochberg correction

3. Normalizing control to ChIP-seq sample

- Select fraction of potential peaks to exclude (parameter P_f)
- Count tags in bins along chromosome for ChIP-seq sample and control
- Determine slope of least squares linear regression

4. Second pass: scoring enriched target regions relative to control

- For potential binding sites calculate the fold enrichment
- Compute a P-value from the binomial distribution
- Correct for multiple hypothesis testing and determine enriched target sites
Comparing peak calling algorithms

Reproducibility between samples

- Spearman’s rank correlation provides a metric for replicate consistency but does not select consistent events.
- Consider two ranked lists of n detected events X and Y, one from each replicate, each ranked by scores from most significant to least significant.
- For matched event i ranks are x_i and y_i in X and Y.

$$
\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}
$$
Irreproducible Discovery Rate (IDR) Analysis

- Consider that the lists \(X \) and \(Y \) are a mixture of two kinds of events - reproducible and irreproducible
- Model the ranking scores as a two component mixture and learn the parameters of the reproducible and irreproducible components
- For IDR \(\alpha \), select top \(l \) pairs using their scores such that the probability that the rate of pairs from the irreproducible part of the mixture is \(\alpha \)
Irreproducible Discovery Rate (IDR) Analysis

- $\Psi_n(t)$ is the fraction of the n events that are paired in the top $n \times t$ events in both X and Y. It is roughly linear from $t = 0$ to the point when events are no longer reproducible (not shared between replicates within the ranking).
- $\Psi'_n(t)$ is first derivative of $\Psi_n(t)$ with respect to t. It allows us to visualize when we transition from reproducible to irreproducible events as t increases.
Irreproducible Discovery Rate (IDR) Analysis

Fig. 1. An illustration of the correspondence profile in an idealized case, where top 50% are genuine signals and bottom 50% are noise. In this case, all signals are ranked higher than noise; two rank lists have perfect correspondence for signals and no correspondence for noise. (a) Correspondence curve. (b) Change of correspondence curve.

The irreproducible discovery rate (IDR) framework for assessing reproducibility of ChIP-seq data sets

Panel A shows a scatterplot of the significance scores of peaks identified in two replicate ChIP-seq experiments. The IDR method classifies peaks into reproducible (black) and irreproducible (red) groups, and computes for each peak the probability that the peak belongs to the irreproducible group. It ranks and selects peaks according to this probability, and computes IDR, the expected rate of irreproducible discoveries in the selected peaks. Panel B shows the estimated IDR at different rank thresholds when the peaks are sorted by the original significance score.

Irreproducible Discovery Rate Results

Fig. 7. The coverage of high-confidence CTCF motif at different numbers of selected ChIP-seq peaks, plotted at various idr cutoffs for nine peak callers on a CTCF Chip-seq experiment from ENCODE. The bars on the curves of Peakseq, MACS, SPP, Fseq and Hotspot show the number of peaks selected at IDR = 0.05. No selection is made for the rest of the peak callers because model selection favors the one-component model for peaks identified by these callers.

Histone modifications have various patterns

- Some are similar to protein binding data, e.g., with tall, sharp peaks: H3K4
- Some have wide (mega-bp) “blocks”: H3K9
- Some are variable, with both peaks and blocks: H3K27me3, H3K36me3. Also, RNA Pol II - stalled binding shows as peaks, moving along with transcription shows as broad stretches
Methods and software for ChIP-seq peak/block calling

Histone modification ChIP-seq data

[Image of a chromosome 18 with gene expression levels for different histone modifications]
The transcription factor and histone modification landscape

A Inactive

B Active (promoter)

C Active (enhancer)
Peak/block calling from histone ChIP-seq

Use the software developed for TF data:

- Works fine for some data (K4, K27, K36)
- Not ideal for K9: it tends to separate a long block into smaller pieces

Many existing methods, mostly based on smoothing, HMM or wavelet
Complications in histone peak/block calling

Smoothing-based method:

- Long block requires bigger smoothing span, which hurts boundary detection
- Data with mixed peak/block (K27me3, K36me3) requires varied span: adaptive fitting is computationally infeasible

HMM-based method:

- Tend to overfit. Sometimes need to manually specify transition matrix
Available methods/software for histone data peak calling

- MACS2
- BCP (Bayesian change point caller)
- SICER
- RSEG
- UW Hotspot
- BroadPeak
- mosaicsHMM
- WaveSeq
- ZINBA
- ARHMM
- ...
MACS2

- Has an option for broad peak calling, which uses post hoc approach to combine nearby peaks.
- Syntax:

 macs2 callpeak -t ChIP.bam -c Control.bam --broad -g hs --broad-cutoff 0.1
Algorithm:

- Cut genome of length L into non-overlapping windows w and compute a score s for each window with l reads out of N total based on a Poisson model, $s(l) = -\log P(l, \lambda)$, $\lambda = wN/L$
- Identify “islands” vs. “non-islands” by thresholding the scores and clustering windows with significant scores
- For each island, compute the probability of observing the island with a given score. Constructing score distribution is involved

http://home.gwu.edu/~wpeng/Software.htm
SICER: Definition of island

- Eligible and ineligible windows

\[\sum_{l=l_0}^{\infty} \frac{P(l, \lambda)}{\lambda} \leq p_0 \]

- Eligible windows are separated by gaps of ineligible windows
- Island - cluster of eligible windows separated by gaps of size at most \(g \) windows

Example islands for read count threshold \(l_0 = 2 \) and number of gaps \(g = 2 \)
SICER: Scoring islands

- The scoring function is based on the probability of finding the observed tag count in a random background.
- For a window with \(m \) reads,
 - The probability of finding \(m \) reads is Poisson \(P(m, \lambda) \).
 - \(\lambda = wN/L \) is the average number of reads in each window (\(w - \) genome window size, \(L - \) genome length, \(N - \) total number of reads in the ChIP-seq library).
- Scoring function for an eligible window:
 \[
s = -\log P(m, \lambda)
\]
- Key quantity: the score of an island
 - Aggregate score of all eligible windows in the island
 - It corresponds to the background probability of finding the observed pattern.
SICER: Island score statistics

- Probability distribution of scores for a single window in a random background model ($\delta(\cdot)$ - Dirac delta function):

$$p(s) = \sum_{l \geq l_0} \delta(s - s(l))P(l, \lambda)$$

- Probability of a window being ‘ineligible’:

$$t = P(0, \lambda) + P(1, \lambda) + ... + P(l_0 - 1, \lambda)$$

- The number of ‘ineligible’ windows in a gap ranges from zero to g. Gap factor:

$$G = 1 + t + t^2 + ... + t^g$$
SICER: Island score statistics

- Probability of finding an island of score s:

$$M(s) = t^{g+1} \tilde{M}(s) t^{g+1}$$

- The island score can be partitioned between the last ‘eligible’ window and the rest in a combinatorial manner, therefore a recursion relation can be constructed for the kernel $\tilde{M}(s)$:

$$\tilde{M}(s) = G(\lambda, l_0, g) \int_{s_0}^{s} \tilde{M}(s - s') p(s') ds'$$
SICER: Island score statistics

- Asymptotics of island score distribution in the random background

\[\tilde{M}(s) = \alpha \exp(-\beta s) \]

- Estimate \(\beta \) from

\[G(\lambda, l_0, g) \sum_{l \geq l_0} P(l, \lambda)^{1-\beta} = 1 \]

- then, estimate \(\alpha \) by fitting
SICER: Island score statistics

- Significance determination with random background model:
 - E-value determines an island score threshold
 - Threshold score value s_T can be determined by requiring the expected number of islands with scores above the threshold s_T to be less than a E-value threshold e:

$$\sum_{s \geq s_T} LM(s) \leq e$$

SICER: Choosing parameters

- Fragment size
- Window size: data resolution
- Gap size
- Compared with other methods, SICER focuses on the clustered enrichment rather than local enrichment
Use SICER

- The software is written in Python
- Inputs are bed files for IP and control
- Good computational performance
- Results are sometimes sensitive to the parameters
- A typical command is like: `SICER.sh . h3k27me3.bed control.bed . hg19 2 200 150 0.74 600 0.01`
Summary for ChIP-seq peak/block calling

- Detect regions with reads enriched
- Control sample is important
- Incorporate some special characteristics of the data improves results
- Calling wide peaks is harder
- Many software available
After peak/block calling

- Check sequencing depth
 - Sequencing platform
 - Image analysis (base calling)
 - 35–50 bp sequences
 - Genome alignment
 - Peak calling
 - Quality scores
 - Control sample

Enriched regions
- Visualization with genome browser
- Motif discovery
- Relationship to gene structure
- Integration with gene expression
- Gene set analysis
- Differential profile analysis
- Other advanced analysis
Comparison of multiple ChIP-seq

- It’s important to understand the co-occurrence patterns of different TF bindings and/or histone modifications
- Post hoc methods: look at overlaps of peaks and represent by Venn Diagram
Differential binding (DB)

This is different from the overlap analysis, because it considers quantitative changes.

Straightforward methods:

- Call peaks from individual dataset
- Union the called peaks to form candidate regions
- Treat the candidate regions as genes, then use RNA-seq method to test.
 Or model the differences of normalized counts from two conditions
Issues to consider in DB analysis

How to use control data:

- Need to model the IP-control relationship
- Simply subtracting control might not be ideal

Normalization between experiments:

- Signal to noise ratios (SNRs) are different due to technical and biological artifacts

Biological variation and experimental design (same as in RNA-seq)
Methods and software for ChIP-seq peak/block calling

Existing method/software for DB analysis

- **ChIPDiff** (Xu et al. 2008, Bioinformatics): HMM on differences of normalized IP counts between two groups
- **DIME** (Taslim et al. 2009, 2011, Bioinformatics): finite mixture model on differences of normalized IP counts
- **MAnorm** (Shao et al. 2012, Genome Biology): normalization based on MA plot of counts from two groups, then use normalized “M” values to rank differential peaks
- **DBChIP** (Liang et al. 2012 Bioinformatics) and **DiffBind**: Bioconductor packages, based on RNA-seq method
- **ChIPComp** (Chen et al. 2015 Bioinformatics): Based on linear model framework, works for general design
Software packages for the analysis of differential binding in ChIP-seq

<table>
<thead>
<tr>
<th>Software tool</th>
<th>Availability</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACS [17] (version 2)</td>
<td>https://github.com/taoliu/MACS/</td>
<td>Differential peak detection based on paired four bedGraph files</td>
</tr>
<tr>
<td>MAnorm [34]</td>
<td>http://bcb.dfci.harvard.edu/~gcyan/MAnorm/MAnorm.htm</td>
<td>Robust regression to derive a linear model</td>
</tr>
<tr>
<td>NarrowPeaks</td>
<td>http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html</td>
<td>Shape-based analysis of variation using functional PCA</td>
</tr>
<tr>
<td>POLYPHEMUS [37]</td>
<td>http://cran.r-project.org/web/packages/polyphemus/</td>
<td>Non-linear normalization on RNA Pol II profiling</td>
</tr>
</tbody>
</table>
It is of great interest to study how the gene expressions are controlled by protein bindings and epigenetic modifications.

Easy approach:
- Look at the correlation of promoter TF binding (from ChIP-seq), and gene expression (from RNA-seq).

More advanced approaches:
- Build a model to predict gene expression (from RNA-seq) from protein binding and epigenetic data (from ChIP-seq).
- Build a network for all ChIP- and RNA-seq data.
Methods and software for ChIP-seq peak/block calling

Downstream analysis

- Find the nearest gene to each peak
- Check distribution relative to gene features (start site, exon, intron, upstream/downstream)
- Find overrepresented motifs in peak region (TFBS binding sites of our factor + possible co-binders) - kmers/logos
- Check if peaks are clustered or co-occur with other binding events
- Sequence conservation (or conservation of binding event, if data is available)
- Gene set functional analysis
What are motifs?

- Short, recurring patterns in DNA that are presumed to have a biological function
- Often indicate sequence-specific binding sites for proteins such as nucleases and transcription factors (TF)
- In this example, if allowing 1 base mismatch, there are two motifs: TTGACA and GCATC:
Motif finding

- Sequence K reads. Goal, to find the locations of motif sites
 - Sequence 1: site starts at a_1
 - Sequence 2: site starts at a_2
 - ...
 - Sequence N: site starts at a_N
- We don’t know the alignment variable $A = \{a_1, a_2, ..., a_N\}$
- We seek within each sequence mutually similar segments of specified width W
Motif finding

- The Gibbs motif sampling (a Monte-Carlo algorithm)
- Every position i in the motif sequence follows probability distribution with $q_{ij} = \{q_{i,1}, ..., q_{i,4}\}$
 - i ranges from 1 to motif length w
 - j ranges across the nucleotides (paper describes amino acids)
- Background - each non-motif position follows a common probability distribution $p_j = \{p_1, ..., p_4\}$
- b_j - background frequency of symbol j
- $c_{i,j}$ - count of symbol j at position i

Motif finding

- Start by choosing \(w \) and randomly positioning each motif
- Predictive update step: Randomly choose one sequence, calculate \(q_{i,j} \) and \(p_j \) from \(N - 1 \) remaining sequences

\[
q_{i,j} = \frac{c_{i,j} + b_j}{N - 1 + \sum b_j}
\]
Motif finding

- Stochastic sampling step: For withheld sequence, slide motif down sequence and calculate agreement with model

\[
\frac{\Pi(q_{ij})^{c_{xij}}}{\Pi(p_{ij})^{c_{xij}}}
\]

(see the paper for details)
Motif finding

- Don’t just choose the maximum
- Instead, select a new A_k position proportional to this odds ratio
- Then, choose a new sequence to withhold, and repeat everything
- Stop the iteration if there is no change in maximizing the likelihood function

$$F = \sum_{i=1}^{W} \sum_{j=1}^{4} c_{i,j} \log \frac{q_{i,j}}{p_{j}}$$

Summary

- ChIP-seq detects TFBS or measure histone modifications along the genome
- Peak (short and long) detection is the major goal of data analysis
- Number of aligned reads are input data. Data in neighboring regions need to be combined to call peaks
- Many similar technologies, and the method are more or less the same
Software tools for motif analysis of ChIP-seq peaks and their uses

See http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003326#s5 for full table

<table>
<thead>
<tr>
<th>Category</th>
<th>Software tool</th>
<th>Web Server</th>
<th>Obtain peak regions</th>
<th>Motif discovery</th>
<th>Motif comparison</th>
<th>Central motif enrichment analysis</th>
<th>Local motif enrichment analysis</th>
<th>Motif spacing analysis</th>
<th>Motif prediction/mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining sequences</td>
<td>Galaxy [50-52]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RSAT [53]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UCSC Genome Browser [54]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChlPMunk [55]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motif discovery + more</td>
<td>CisGenome [56]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CompleteMOTIFS [48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEME-ChIP [57]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>peak-motifs [58]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cistrome [49]</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mikhail Dozmorov
ChIP-seq
Spring 2018
More tools

- MotifMap: genome-wide maps of regulatory elements
- Databases for known motifs: TRANSFAC and JASPAR

http://motifmap.ics.uci.edu/
http://jaspar.genereg.net/