Epigenomic enrichment

Mikhail Dozmorov

Spring 2018
Gene enrichment vs. genome enrichment

- **Gene set enrichment analysis** - summarizing many **genes** of interest, such as differentially expressed genes, with a few common **gene annotations** (molecular functions, canonical pathways)

- **Epigenomic enrichment analysis** - summarizing many **genomic regions** of interest, such as disease-associated genomic variants, with a few common **genome annotations** (chromatin states, transcription factor binding sites)
Genomic regions

- Gene/exon boundaries, promoters
- Single Nucleotide Polymorphisms (SNPs)
- Transcription Factor Binding Sites (TFBS)
- Differentially methylated regions
- CpG islands

Each genomic region has coordinates (unique IDs):

Chromosome, Start, End
Epigenomic (regulatory) regions - genomic regions annotated as carrying functional and/or regulatory potential

- DNasel hypersensitive sites
- Histone modification marks
- Transcription Factor Binding Sites
- DNA methylation
- Enhancers
- ...
Why “genomic region enrichment analysis”?

Enrichment = functional impact

- **Hypothesis**: SNPs in epigenomic regions may disrupt regulation
- More significant enrichment = more SNPs in epigenomic regions = more regulation is disrupted (SNP burden)
Regulatory marks are highly non-random

- Statistical analysis of pilot ENCODE regions showed highly non-random location of regulatory elements
- There are regulatory “hotspots” enriched in transcription factor binding sites, histone marks, as well as “deserts” of depleted regulatory marks
- Combinations of different types of regulatory marks matter

Statistics of epigenomic enrichments

- 6 out of 7 disease-associated SNPs overlap with epigenomic marks
- How likely this to be observed by chance? (Chi-square test/Binomial test/Permutation test)
Pearson correlation coefficient r: this quantity gives equal weight to co-binding (1,1) and co-non-binding (0,0). Hence, high values may not necessarily imply high levels of co-occurrence. For the above example, $r = 0.36$.
Statistics of epigenomic enrichments

<table>
<thead>
<tr>
<th></th>
<th>TF2 no</th>
<th>TF2 yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1 no</td>
<td>n-k+t</td>
<td>m-t</td>
</tr>
<tr>
<td>TF1 yes</td>
<td>k-t</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>m</td>
</tr>
</tbody>
</table>

- **Hypergeometric test**: it tests for co-occurrence based on the contingency table, which can be re-written using random variables.

- Assume that the row and column sums \((m, n, k)\) are fixed. The probability of observing \(t\) is hypergeometric. The p-value for the example is

 \[
 p = Pr(T \geq 10 | H_0, m = 12, n = 8, k = 14) = 0.14
 \]
Statistics of epigenomic enrichments

<table>
<thead>
<tr>
<th></th>
<th>TF2 no</th>
<th>TF2 yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1 no</td>
<td>n-k+t</td>
<td>m-t</td>
</tr>
<tr>
<td>TF1 yes</td>
<td>k-t</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>m</td>
</tr>
</tbody>
</table>

- **Chi-square test**: it tests for dependence (not co-occurrence) between TF1 and TF2, and applies to contingency tables with very large counts.
- The difference between observed and expected counts can be approximated by a chi-square distribution with one degree of freedom.

\[
D = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}
\]

where \(O_{ij}\) are the observed counts, and \(E_{ij}\) are the expected counts under the null hypothesis, and are computed under the fixed row and column sums, e.g. \(E_{22} = \frac{mk}{m+n}\)
Statistics of epigenomic enrichments

- **Poisson distribution**: it can be used to compute how likely it is for a single TF to have, say, three binding events in 1 kb with 300 events in 1 Mb. The formula is

\[Pr(x = 3; L = 1\text{kb}; \rho = \frac{300}{1000\text{kb}}) = e^{\lambda \rho} \frac{(L\rho)^x}{x!} \]

where \(\rho \) is the binding rate per bp.

- **Fisher’s method for combining p-values**: one can calculate a p-value for each TF in a genomic region to assess whether that TF has more binding sites than expected in this region. To assess whether both TFs bind to more sites than expected, p-values can be combined using Fisher’s method

\[P = -2 \sum_{i=1}^{n} \log p_i \]
Genomic features are nonrandomly distributed throughout the genome.

In permutation schemes, need to consider this to properly calculate observed and expected overlaps.

Permutation test: it tests for co-occurrence through repeatedly permuting observed enriched regions (or binding events) in one or both profiles many times.

A pre-defined co-occurrence score is calculated for each permutation.

Many permutations produce a null distribution of the co-occurrence score. One can then use this null distribution to compute a p-value for the observed co-occurrence score.
Permutation on steroids

Different randomization strategies:

i. Shuffling across the genome

ii. Shuffling within chromosomes

iii. Shuffling within additional constraints

iv. Sub-sampling within segmented regions
Permutation strategies

<table>
<thead>
<tr>
<th>Randomization method</th>
<th>Description</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome-wide randomization</td>
<td>Shuffling one or more features unconstrained throughout the genome</td>
<td>Simple to implement. Assumes uniform distribution of features across the genome</td>
<td>Ignores chromosome-wide or local biases in the distribution</td>
</tr>
<tr>
<td>Chromosome-wide randomization</td>
<td>Shuffling one or more features unconstrained within respective chromosomes</td>
<td>Simple to implement. Accommodates chromosome-specific biases in the distribution</td>
<td>Ignores local or domain-level biases in the distribution</td>
</tr>
<tr>
<td>Randomization (dis)allowing overlaps</td>
<td>Overlap is allowed (or prohibited) among shuffled features on the genome</td>
<td>Biologically relevant in some scenarios (e.g. sites of amplification and deletions within a cancer genome cannot overlap)</td>
<td>Long run-time. Requires informed assumptions</td>
</tr>
<tr>
<td>Randomization with additional constraints</td>
<td>User-specific constraints are included in the model</td>
<td>Can accommodate case-specific biological or technical constraints</td>
<td>Long run-time. Requires informed assumptions</td>
</tr>
<tr>
<td>Randomization with fixed location model</td>
<td>Generating expected distribution by probabilistically sampling from the observed distribution</td>
<td>Biologically relevant in several scenarios (e.g. when analyzing transcription factor binding site co-occurrence)</td>
<td>Higher order organization of the features might be ignored.</td>
</tr>
<tr>
<td>Randomization with fixed locations fixed event type model</td>
<td>Shuffling location of the first feature, while keeping the location of the second feature unchanged</td>
<td>Preserves higher order structure of the second feature</td>
<td>The chromosome or domain-specific biases in the first feature are not considered</td>
</tr>
<tr>
<td>Randomization with sub-sampling accounting for genomic structure</td>
<td>Shuffling within respective segments</td>
<td>Highly powerful if correctly implemented. Segments can be generated based on sequence composition or biologically relevant assumptions</td>
<td>Potentially longer run time than others. Determining the segment boundaries is nontrivial</td>
</tr>
</tbody>
</table>
Evaluating overlap between sets of genomic regions

Table 1. Methods for scoring overlapping and adjacent signals in two or more ChIP (or DamID) profiles. See text for details of these methods.

<table>
<thead>
<tr>
<th>Number of profiles under comparison</th>
<th>Accounting for spatial variability of events (Yes/No)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two</td>
<td>No</td>
<td>Simple counting(^{17,18,33,34})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pearson correlation coefficient(^{14,35–37})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypothesis tests based on a single score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypergeometric test(^{3,5,20,38})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chi-square test(^{36})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Log-linear model(^{39})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permutation test(^{40–42})</td>
</tr>
<tr>
<td>Two</td>
<td>Yes</td>
<td>Poisson hierarchical model(^{43})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hidden Markov model(^{44})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Standard gene’(^{45})</td>
</tr>
<tr>
<td>Many</td>
<td>Yes</td>
<td>Overall assessment of co-occurrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permutation test(^{4,46,47})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identification of ‘co-localisation’ hotspots:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple testing based on Poisson distribution(^{46})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clustering(^{14,37,48–51})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identification of (cis)-regulatory modules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Factor regression(^{52})</td>
</tr>
</tbody>
</table>

We can look at biological significance of our peaks using Gene Ontologies (GO) terms genome annotations

- GO: Set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences

- Popular tool: the Genomic Regions Enrichment of Annotations Tool (GREAT)

Binding sites are often not located in the proximal region of the gene of interest
GREAT looks beyond this proximal region
Input: BED file with regions of interest
Output: Matching GO terms for Molecular Functions, Biological Processes, Phenotypes, Diseases, etc.
GREAT: Cis-regulatory regions functions prediction

GREAT: Cis-regulatory regions functions prediction

Step 4: Perform hypergeometric test over genes

\[N = 8 \text{ genes in genome} \]
\[K_\pi = 3 \text{ genes in genome carry annotation } \pi \]
\[n = 2 \text{ genes selected by proximal genomic regions} \]
\[k_\pi = 1 \text{ gene selected carries annotation } \pi \]
\[P = \Pr_{\text{hyper}} (k \geq 1 \mid N = 8, K = 3, n = 2) \]

Step 4: Perform binomial test over genomic regions

\[n = 6 \text{ total genomic regions} \]
\[p_\pi = 0.6 \text{ fraction of genome annotated with } \pi \]
\[k_\pi = 5 \text{ genomic regions hit annotation } \pi \]
\[P = \Pr_{\text{binom}} (k \geq 5 \mid n = 6, p = 0.6) \]