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Gene enrichment vs. genome enrichment

@ Gene set enrichment analysis - summarizing many genes of
interest, such as differentially expressed genes, with a few common
gene annotations (molecular functions, canonical pathways)

e Epigenomic enrichment analysis - summarizing many genomic
regions of interest, such as disease-associated genomic variants, with a
few common genome annotations (chromatin states, transcription
factor binding sites)
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Genomic regions

Gene/exon boundaries, promoters

Single Nucleotide Polymorphisms (SNPs)
Transcription Factor Binding Sites (TFBS)
Differentially methylated regions

CpG islands

Each genomic region has coordinates (unique IDs):

Chromosome, Start, End
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Annotations of genomic regions

e Epigenomic (regulatory) regions - genomic regions annotated as
carrying functional and/or regulatory potential

DNasel hypersensitive sites
Histone modification marks
Transcription Factor Binding Sites
DNA methylation

Enhancers

Mikhail Dozmorov Epigenomic enrichment Spring 2018 4/21



Why “genomic region enrichment analysis”?

Enrichment = functional impact

@ Hypothesis: SNPs in epigenomic regions may disrupt regulation
@ More significant enrichment = more SNPs in epigenomic regions =
more regulation is disrupted (SNP burden)

. - DNAse sites
-- H3K4me3 mark
- SNP
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Regulatory marks are highly non-random

@ Statistical analysis of pilot ENCODE regions showed highly
non-random location of regulatory elements

@ There are regulatory “hotspots” enriched in transcription factor binding
sites, histone marks, as well as “deserts” of depleted regulatory marks

@ Combinations of different types of regulatory marks matter

Zhang, Z. D., A. Paccanaro, Y. Fu, S. Weissman, Z. Weng, J. Chang, M. Snyder, and M. B. Gerstein. “Statistical Analysis of
the Genomic Distribution and Correlation of Regulatory Elements in the ENCODE Regions.” Genome Research 17, no. 6 (June
1, 2007): 787-97. https://doi.org/10.1101/gr.5573107.
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Statistics of epigenomic enrichments
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@ 6 out of 7 disease-associated SNPs overlap with epigenomic marks
@ How likely this to be observed by chance? (Chi-square test/Binomial
test/Permutation test)
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Basic concepts of epigenomic enrichments

TF2. 0 00 1 1111011101111 11
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@ Pearson correlation coefficient r: this quantity gives equal weight to
co-binding (1,1) and co-non-binding (0,0). Hence, high values may not
necessarily imply high levels of co-occurrence. For the above example,
r = 0.36.
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Statistics of epigenomic enrichments
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@ Hypergeometric test: it tests for co-occurrence based on the
contingency table, which can be re-written using random variables

@ Assume that the row and column sums (m, n, k) are fixed. The
probability of observing t is hypergeometric. The p-value for the
example is p = Pr(T > 10|Hp,m=12,n =8,k = 14) = 0.14
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Statistics of epigenomic enrichments

TF2 no TF2 yes

TF1 no n-k+t m-t m-+n-k
TF1 yes k-t t k
n m m--n

@ Chi-square test: it tests for dependence (not co-occurrence) between TF1 and
TF2, and applies to contingency tables with very large counts

@ The difference between observed and expected counts can be approximated by a
chi-square distribution with one degree of freedom

2 2 OI--_E’--2
p-y Y oAk

i=1 j=1

where Oj are the observed counts, and Ej are the expected counts under the null

hypothesis, and are computed under the fixed row and column sums, e.g. Ex» = ,;"fn
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Statistics of epigenomic enrichments

@ Poisson distribution: it can be used to compute how likely it is for a single
TF to have, say, three binding events in 1 kb with 300 events in 1 Mb. The

formula is

300 Loy
Pr(x = 3; L = 1kb; p = 1000kb):e“’(fl)

where p is the binding rate per bp.

@ Fisher’s method for combining p-values: one can calculate a p-value for
each TF in a genomic region to assess whether that TF has more binding
sites than expected in this region. To assess whether both TFs bind to more
sites than expected, p-values can be combined using Fisher's method

P=-2 z": logp;
i=1
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Permutation

@ Genomic features are nonrandomly distributed throughout the genome

@ In permutation schemes, need to consider this to properly calculate
observed and expected overlaps

@ Permutation test: it tests for co-occurrence through repeatedly
permuting observed enriched regions (or binding events) in one or both
profiles many times

@ A pre-defined co-occurrence score is calculated for each permutation

@ Many permutations produce a null distribution of the co-occurrence
score. One can then use this null distribution to compute a p-value for
the observed co-occurrence score
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Permutation

A  Observed distribution ——
of a genomic feature

Expected distribution
after randomization R—

Enrichment of the _‘ ._ ‘

genomic feature Chrl Chr2

De, Subhajyoti, Brent S. Pedersen, and Katerina Kechris. “The Dilemma of Choosing the Ideal Permutation Strategy While
Estimating Statistical Significance of Genome-Wide Enrichment.” Briefings in Bioinformatics 15, no. 6 (November 2014):
919-28. https://doi.org/10.1093/bib/bbt053.
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Permutation on steroids
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Permutation strategies

Randomization method

Genome-wide
randomization

Chromosome-wide
randomization

Randomization
(dis)allowing overlaps

Randomization with
additional constraints

Randomization with fixed
location model

Randomization with fixed
locations fixed event type
model

Randomization with sub-
sampling accounting for
genomic structure

De, Subhajyoti, Brent S. Pedersen, and Katerina Kechris

Description

Shuffling one or more features
unconstrained throughout the
genome

Shuffling one or more features
unconstrained within respective
chromosomes

Overlap is allowed (or prohibited)
among shuffled features on the
genome

User-specific constraints are included
in the model

Generating expected distribution by
probabilistically sampling from the
observed distribution

Shuffling location of the first feature,
while keeping the location of the
second feature unchanged

Shuffling within respective segments

Advantage

Simple to implement. Assumes uniform distribution of
features across the genome

Simpletoi cl
specific biases in the distribution

Biologically relevant in some scenarios (e.g. sites of
amplification and deletions within a cancer genome
cannot overlap)

Can ac or technical
constraints

case-specific bit

Biologically relevant in several scenarios (e.g. when
analyzing transcription factor binding site co-
occurrence)

Preserves higher order structure of the second feature

Highly powerful if correctly implemented. Segments
can be generated based on sequence composition or
biologically relevant assumptions

Disadvantage

Ignores chromosome-wide or
local biases in the distribution

Ignores local or domain-level
biases in the distribution

Long run-time. Requires informed
assumptions

Long run-time. Requires informed
assumptions

Higher order organization of the
features might be ignored.

The chromosome or domain-
specific biases in the first feature
are not considered

Potentially longer run time than
others. Determining the segment
boundaries is nontrivial

“The Dilemma of Choosing the Ideal Permutation Strategy While
matics 15. no. 6 (November 2014):
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Evaluating overlap between sets of genomic regions

Table 1 Methods for scoring overlapping and adjacent signals in two or more ChIP (or DamlD) profiles. See text for details of
these methods

Number of profiles under comparison Accounting for spatial variability of events (Yes/No) Method

Two No
Yes
Many Yes

Simple counting' 7183334

Pearson correlation coefficien
Hypothesis tests based on a single score
H)q:ergeometnc test>>20:38
Chi-square test>®
Log-linear model*®
Permutation test***?
Poisson hierarchical model**
Hidden Markov model*
‘Standard gene’**

143537

Overall assessment of co-occurrence
Permutation test***’

Identification of ‘co-localisation” hotspots:
Multiple testmg based on Poisson distribution*®
Clustering'*

Identification of cis- regulatory modules
Factor regression®

Fu, Audrey Qiuyan, and Boris Adryan. “Scoring Overlapping and Adjacent Signals from Genome-Wide ChIP and DamID
Assays.” Molecular BioSystems 5, no. 12 (December 2009): 1429-38. https://doi.org/10.1039/B906880e.
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Looking for significant GO enrichment

@ We can look at biological significance of our peaks using Gene
Ontologies (GO) terms genome annotations

o GO: Set of structured, controlled vocabularies for community use in
annotating genes, gene products and sequences

@ Popular tool: the Genomic Regions Enrichment of Annotations Tool
(GREAT)

http://great.stanford.edu/public/html/
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GREAT: Cis-regulatory regions functions prediction

@ Binding sites are often not located in the proximal region of the gene
of interest

@ GREAT looks beyond this proximal region

o Input: BED file with regions of interest

@ Output: Matching GO terms for Molecular Functions, Biological
Processes, Phenotypes, Diseases, etc.
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GREAT: Cis-regulatory regions functions prediction

a

Hypergeometric test over genes b Binomial test over genomic regions

Step 1: Infer proximal gene regulatory domains Step 1: Infer distal gene regulatory domains
r Gene transcription start site |" Gene transcription start site
= Ontology annotation

= Ontology annotation
(e.g., “actin cytoskeleton”) (e.g., “actin cytoskeleton”)

= Proximal regulatory domain

=— Distal regulatory domain
of gene with/without 7 of gene with/without =
T T T T T T

B i B i B F_F P ripl r [

McLean, Cory Y., Dave Bristor, Michael Hiller, Shoa L. Clarke, Bruce T. Schaar, Craig B. Lowe, Aaron M. Wenger, and Gill

Bejerano. “GREAT Improves Functional Interpretation of Cis-Regulatory Regions.” Nature Biotechnology 28, no. 5 (May 2010):
495-501. https://doi.org/10.1038/nbt.1630.
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-regulatory regions functions prediction

Step 2: Associate genomic regions with Step 2: Calculate annotated fraction of genome
genes via regulatory domains

Y Genomic region associated
with nearby gene
X Ignored distal genomic region

' |-N7-[| rqv\ r ‘\‘Fv r Step 3: Count genomic regions
v \

associated with the annotation

0.6 of genome is annotated with =

Y Genomic region

Step 3: Count genes selected by Y vy Yvyy
proximal genomic regions -_—
2 genes selected by proximal genomic regions 5 genomic regions hit annotation =

1 gene selected carries annotation =

McLean, Cory Y., Dave Bristor, Michael Hiller, Shoa L. Clarke, Bruce T. Schaar, Craig B. Lowe, Aaron M. Wenger, and Gill
Bejerano. “GREAT Improves Functional Interpretation of Cis-Regulatory Regions.” Nature Biotechnology 28, no. 5 (May 2010):
495-501. https://doi.org/10.1038/nbt.1630.
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GREAT: Cis-regulatory regions functions prediction

Step 4: Perform hypergeometric test over genes Step 4: Perform binomial test over genomic regions
N =8 genes in genome n = 6 total genomic regions
K. = 3 genes in genome carry annotation p,, = 0.6 fraction of genome annotated with
n =2 genes selected by proximal genomic regions k. =5 genomic regions hit annotation =

k. =1 gene selected carries annotation =

P=Prpyper (k211N=8,K=3,n=2) P=Prpinom (k251 n=6, p=0.6)

McLean, Cory Y., Dave Bristor, Michael Hiller, Shoa L. Clarke, Bruce T. Schaar, Craig B. Lowe, Aaron M. Wenger, and Gill
Bejerano. “GREAT Improves Functional Interpretation of Cis-Regulatory Regions.” Nature Biotechnology 28, no. 5 (May 2010):
495-501. https://doi.org/10.1038/nbt.1630.
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