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Gene enrichment vs. genome enrichment

Gene set enrichment analysis - summarizing many genes of
interest, such as differentially expressed genes, with a few common
gene annotations (molecular functions, canonical pathways)

Epigenomic enrichment analysis - summarizing many genomic
regions of interest, such as disease-associated genomic variants, with a
few common genome annotations (chromatin states, transcription
factor binding sites)
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Genomic regions

Gene/exon boundaries, promoters
Single Nucleotide Polymorphisms (SNPs)
Transcription Factor Binding Sites (TFBS)
Differentially methylated regions
CpG islands

Each genomic region has coordinates (unique IDs):

Chromosome, Start, End
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Annotations of genomic regions

Epigenomic (regulatory) regions - genomic regions annotated as
carrying functional and/or regulatory potential
DNaseI hypersensitive sites
Histone modification marks
Transcription Factor Binding Sites
DNA methylation
Enhancers
. . .
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Why “genomic region enrichment analysis”?

Enrichment = functional impact

Hypothesis: SNPs in epigenomic regions may disrupt regulation
More significant enrichment = more SNPs in epigenomic regions =
more regulation is disrupted (SNP burden)
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Regulatory marks are highly non-random

Statistical analysis of pilot ENCODE regions showed highly
non-random location of regulatory elements
There are regulatory “hotspots” enriched in transcription factor binding
sites, histone marks, as well as “deserts” of depleted regulatory marks
Combinations of different types of regulatory marks matter

Zhang, Z. D., A. Paccanaro, Y. Fu, S. Weissman, Z. Weng, J. Chang, M. Snyder, and M. B. Gerstein. “Statistical Analysis of
the Genomic Distribution and Correlation of Regulatory Elements in the ENCODE Regions.” Genome Research 17, no. 6 (June
1, 2007): 787–97. https://doi.org/10.1101/gr.5573107.

Mikhail Dozmorov Epigenomic enrichment Spring 2018 6 / 21

https://doi.org/10.1101/gr.5573107


Statistics of epigenomic enrichments

6 out of 7 disease-associated SNPs overlap with epigenomic marks
How likely this to be observed by chance? (Chi-square test/Binomial
test/Permutation test)
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Basic concepts of epigenomic enrichments

TF1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0

TF2 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1

Pearson correlation coefficient r : this quantity gives equal weight to
co-binding (1,1) and co-non-binding (0,0). Hence, high values may not
necessarily imply high levels of co-occurrence. For the above example,
r = 0.36.
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Statistics of epigenomic enrichments

TF2 no TF2 yes

TF1 no n-k+t m-t m+n-k
TF1 yes k-t t k

n m m+n

Hypergeometric test: it tests for co-occurrence based on the
contingency table, which can be re-written using random variables
Assume that the row and column sums (m, n, k) are fixed. The
probability of observing t is hypergeometric. The p-value for the
example is p = Pr(T ≥ 10|H0,m = 12, n = 8, k = 14) = 0.14
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Statistics of epigenomic enrichments

TF2 no TF2 yes

TF1 no n-k+t m-t m+n-k
TF1 yes k-t t k

n m m+n

Chi-square test: it tests for dependence (not co-occurrence) between TF1 and
TF2, and applies to contingency tables with very large counts
The difference between observed and expected counts can be approximated by a
chi-square distribution with one degree of freedom

D =
2∑

i=1

2∑
j=1

(Oij − Eij)2

Eij

where Oij are the observed counts, and Eij are the expected counts under the null
hypothesis, and are computed under the fixed row and column sums, e.g. E22 = mk

m+n
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Statistics of epigenomic enrichments

Poisson distribution: it can be used to compute how likely it is for a single
TF to have, say, three binding events in 1 kb with 300 events in 1 Mb. The
formula is

Pr(x = 3; L = 1kb; ρ = 300
1000kb ) = eLρ (Lρ)x

x !
where ρ is the binding rate per bp.

Fisher’s method for combining p-values: one can calculate a p-value for
each TF in a genomic region to assess whether that TF has more binding
sites than expected in this region. To assess whether both TFs bind to more
sites than expected, p-values can be combined using Fisher’s method

P = −2
n∑

i=1
logpi

where n is the number of TFs. The quantity P has a chi-square distribution with
2n degrees of freedom. As before, a small combined p-value associated with the
quantity P suggests co-occurrence.

Mikhail Dozmorov Epigenomic enrichment Spring 2018 11 / 21



Permutation

Genomic features are nonrandomly distributed throughout the genome
In permutation schemes, need to consider this to properly calculate
observed and expected overlaps
Permutation test: it tests for co-occurrence through repeatedly
permuting observed enriched regions (or binding events) in one or both
profiles many times
A pre-defined co-occurrence score is calculated for each permutation
Many permutations produce a null distribution of the co-occurrence
score. One can then use this null distribution to compute a p-value for
the observed co-occurrence score
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Permutation

De, Subhajyoti, Brent S. Pedersen, and Katerina Kechris. “The Dilemma of Choosing the Ideal Permutation Strategy While
Estimating Statistical Significance of Genome-Wide Enrichment.” Briefings in Bioinformatics 15, no. 6 (November 2014):
919–28. https://doi.org/10.1093/bib/bbt053.
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Permutation on steroids
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Permutation strategies

De, Subhajyoti, Brent S. Pedersen, and Katerina Kechris. “The Dilemma of Choosing the Ideal Permutation Strategy While
Estimating Statistical Significance of Genome-Wide Enrichment.” Briefings in Bioinformatics 15, no. 6 (November 2014):
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Evaluating overlap between sets of genomic regions

Fu, Audrey Qiuyan, and Boris Adryan. “Scoring Overlapping and Adjacent Signals from Genome-Wide ChIP and DamID
Assays.” Molecular BioSystems 5, no. 12 (December 2009): 1429–38. https://doi.org/10.1039/B906880e.
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Looking for significant GO enrichment

We can look at biological significance of our peaks using Gene
Ontologies (GO) terms genome annotations

GO: Set of structured, controlled vocabularies for community use in
annotating genes, gene products and sequences

Popular tool: the Genomic Regions Enrichment of Annotations Tool
(GREAT)

http://great.stanford.edu/public/html/
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GREAT: Cis-regulatory regions functions prediction

Binding sites are often not located in the proximal region of the gene
of interest
GREAT looks beyond this proximal region
Input: BED file with regions of interest
Output: Matching GO terms for Molecular Functions, Biological
Processes, Phenotypes, Diseases, etc.
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GREAT: Cis-regulatory regions functions prediction

McLean, Cory Y., Dave Bristor, Michael Hiller, Shoa L. Clarke, Bruce T. Schaar, Craig B. Lowe, Aaron M. Wenger, and Gill
Bejerano. “GREAT Improves Functional Interpretation of Cis-Regulatory Regions.” Nature Biotechnology 28, no. 5 (May 2010):
495–501. https://doi.org/10.1038/nbt.1630.
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