Epigenetics introduction

Mikhail Dozmorov

Spring 2018
One way to expand the regulatory capacity of mammalian genomes has been the addition of regulatory elements located at a distance from their target genes.

Functionally, these elements can be subdivided into three categories:

1. **Enhancer sequences**, which provide an activating influence on transcription
2. **Silencers**, providing a repressive influence
3. **Insulators**, which prevent the transmission of regulatory influence between genomic regions.

The regulatory elements greatly outnumber promoters and have, therefore, been proposed as a driving force behind transcriptional regulation.

These elements may have overlapping functions, they may play different roles in different cell types or developmental stages and they may overlap with promoters and genes.
Epigenetics (epi - “over, on top of” + genetic) is the study of (heritable) changes in gene function that occur without a change in the sequence of the DNA.

- Critical for development and differentiation
- Epigenetic dysregulation is involved in developmental diseases, cancers, certain infectious diseases, and more

Grand question: Where are the promoter, enhancer, and other regulatory regions of the human genome?

14 manually chosen and 30 randomly selected human genomic regions, in total ~30Mb (1%) of the human genome sequence

Dozens of labs did ChIP-seq, under rigorous quality guidelines, for over 100 transcription factors and histone modifications, plus related assays for DNA methylation, chromatin accessibility etc.

Published 14 June 2007, Nature, over 100 authors. “An integrated encyclopedia of DNA elements in the human genome.”

The ENCODE (Encyclopedia of DNA Elements) Consortium is an international collaboration of research groups funded by the National Human Genome Research Institute (NHGRI). The goal of ENCODE is to build a comprehensive parts list of functional elements in the human genome, including elements that act at the protein and RNA levels, and regulatory elements that control cells and circumstances in which a gene is active.

https://www.encodeproject.org/
Roadmap Epigenomics: chromatin regulation in normal cells

http://www.roadmapepigenomics.org/
Nowadays, the most recent and complete resource is IHEC, the International Human Epigenome Consortium. An international effort with several funding agencies, its goal is providing standardized reference epigenomes for a variety of normal and disease tissues. Member groups take part in committees working on standards (assays, data/metadata distribution, ethics...)

http://ihec-epigenomes.org/
IHEC Data Portal

- Goal: Integrate epigenomic public datasets produced within the International Human Epigenome Consortium
- Raw data is in controlled access repositories
- Over 8,000 human datasets
- Datasets from 7 consortia, others coming
- Offers tools for datasets discovery, visualization and pre-analysis

http://epigenomesportal.ca/ihec/
Publicly accessible datasets

- Datasets made available in the IHEC Data Portal is publicly accessible for everyone’s own research

Human data offered by such consortia usually falls in one of two categories:

- Controlled access data
 - Raw data from sequencers
 - Clinical/sensitive information such as phenotypes
 - Archived at repositories such as EGA and dbGaP

- Public data
 - Annotation tracks, to use in tools such as UCSC Genome Browser, Ensembl and IGV.
 - Some donor, sample and library metadata
Functional genomics is a field of molecular biology that attempts to make use of the vast wealth of data produced by genomic projects (such as genome sequencing projects) to describe gene (and protein) functions and interactions.
Chromatin structure

- Chromatin organization has multiple structural layers and organizes chromatin into “domains”
- Both DNA methylation and chromatin marks contain important functional information

Chromatin structure

- Open chromatin - actively transcribed genes
- Heterochromatin - silent, non-transcriptionally active DNA

Active and inactive chromatin

- **Euchromatin**
 - DNA
 - Nucleosome

- **Heterochromatin**
 - Histone protein H3, H2A, H2B, H4
 - Histone tail
Chromatin structure affects cellular identity and state transitions

http://science.sciencemag.org/content/357/6348/eaal2380
Role of chromatin structure in cancer

Normal Chromatin homeostasis

Permissive chromatin

Selection

http://science.sciencemag.org/content/357/6348/eaal2380
Insulators/boundaries of open/closed chromatin

(a) 42% gene bodies
16% promoter
42% intergenic regions

(b) closed chromatin open chromatin closed chromatin

(i) (ii) (iii) (iv) (i)

H3K27Ac
H3K4me1\me3
active gene
inactive chromatin modifications

http://rstb.royalsocietypublishing.org/content/368/1620/20120369
Super-enhancers

Latent
No chromatin markers
Accessible chromatin

Poised
H3K4me1, H3K27me3
Closed chromatin

Active
H3K4me1, H3K27Ac
Accessible chromatin bound by TFs

Super/stretch enhancer
Exceptional H3K4me1 and H3K27Ac levels
Cluster of accessible regions bound by TFs

http://www.cell.com/trends/immunology/fulltext/S1471-4906(15)00172-6
Histone code

- Histone modifications demarcate functional elements in mammalian genomes.
- Can be broadly divided into activating and repressive histone marks.

Histone modifications

- Methylation of lysine residuals
- Methylation of arginine residuals
- Acetylation,
- Ubiquitination,
- ADP-ribosylation
- Phosphorylation
- Mono/di/tri methylation

Histone code summary

Methylation and histone code interplay

High CpG-content promoters (HCPs)

- **Active**
 - RNAPII
 - 'Open' chromatin modifications and RNAPII initiation

- **Poised**
 - Bivalent chromatin modifications

- **Inactive**
 - 'Closed' chromatin modifications

Low CpG-content promoters (LCPs)

- **Selective use**
 - RNAPII

- **H3K4me2 chromatin modifications**

- **DNA methylation and lack of chromatin marks**