Bisulfite sequencing

Mikhail Dozmorov

Spring 2018
Bisulfite sequencing in a nutshell

First treat the DNA with bisulfite. As a result

- Unmethylated C will be turned into T.
- Methylated C will be protected and still be C.
- No change for other bases.

Amplify, then sequence the treated DNA segments.

- The mismatches between C-T measures the methylation strength.

Raw data: sequence reads, but not exactly from the reference genome.
Bisulfite sequencing in a nutshell

OT, original top strand; CTOT, strand complementary to the original top strand; OB, original bottom strand; and CTOB, strand complementary to the original bottom strand.

Bisulfite limitations

- Bisulfite sequencing experiments do not distinguish an additional type of cytosine methylation, the 5-hydroxy-methylcytosine (hmC), which is a critical intermediary in active de-methylation pathways.
- Specific experimental methods for the identification of this mark at the base-resolution were developed.
- MLML, http://smithlabresearch.org/software/mlml/, is a popular computational method for a first analysis of these data.

Workflow for analyzing BS-data

Processing of bisulfite-sequencing data

- Quality control and pre-processing
- Bisulfite sequence alignment
- Quantification of absolute DNA methylation

Data visualization and statistical analysis

- Visual inspection in a genome browser of selected regions
- Visualization of global distribution of methylation values
- Clustering of samples based on similarity

Downstream analysis

- Identification of Differentially Methylated Regions (DMRs)
- Global analysis of DMRs
Mapping of bisulfite-treated sequences to a reference genome constitutes a significant computational challenge due to the combination of:

- The reduced complexity of the DNA code
- Up to four DNA strands to be analysed
- The fact that each read can theoretically exist in all possible methylation states.
The reads from BS-seq cannot be directly aligned to the reference genome.
There are four different strands after bisulfite treatment and PCR.
T could be aligned to T or C.
The search space for alignment is bigger.

3 main strategies for processing WGBS reads

- Wild-card alignment
- Three-letter alignment
- Reference-free processing
Example of bisulfite alignment

a Setup of the example

Genomic DNA sequence: \(\text{CGATGATGTCGCTGA} \)

DNA methylation level: 100% 50% 50% 0%

DNA fragmentation, selective conversion of unmethylated Cs into Ts, DNA sequencing

Bisulphite-sequencing reads: \(\text{ACGTA, ATGAA, ATGATG, TCGA, TCGA, TCGA, TTTG} \)
Wild-card aligners

- Replace Cs in the genomic DNA sequence by the wild-card letter Y, which matches both Cs and Ts in the read sequence.
- Or modify the alignment scoring matrix in such a way that mismatches between Cs in the genomic DNA sequence and Ts in the read sequence are not penalized.
- Software: BSMAP, GSNAP, Last/bisulfighter, Pash, RMAP, RRBSMAP and segemehl
b Wild-card alignment

Reference sequence: YYGATGATGTYGYTGAYGYAYGA

Read alignment:
- TCGA
- TCGA
- TCGT
- TTGT
- ATGT

DNA methylation level:
- 100%
- 50%
- 100%
- 0%
Three-base aligner

- Simplify bisulfite alignment by converting all Cs into Ts in the reads and for both strands of the genomic DNA sequence
- Solware: Bismark, BRAT, BS-Seeker and MethylCoder
c Three-letter alignment

Reference sequence: TTGATGATGTTGTTGATGTATGA

Read alignment:
- TTGA
- TTGA
- TTGA
- TTGA
- ATGT
- ATGT
- ATGT
- ATGA
- ATGA

DNA methylation level:
- N/A
- 50%
- N/A
- 0%
Strengths and weaknesses

- Three-letter aligners have lower coverage in highly methylated regions because they purge the remaining Cs from the bisulfite-sequencing reads and thereby decrease their sequence complexity and they become ambiguous.
- Wild-card aligners typically have higher genomic coverage but at the cost of introducing some bias towards increased DNA methylation levels because the extra Cs in a methylated sequencing read can raise the sequence complexity.
- These problems are more prevalent in repetitive regions of the genome and are reduced with longer reads.
Bismark’s approach to bisulfite mapping and methylation calling.

- Reads from a BS-Seq experiment are converted into a C-to-T and a G-to-A version and are then aligned to equivalently converted versions of the reference genome.
- A unique best alignment is then determined from the four parallel alignment processes.

Bismark A tool to map bisulfite converted sequence reads and determine cytosine methylation states
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
Here, the best alignment has no mismatches and comes from thread (1)
Bismark

The methylation state of positions involving cytosines is determined by comparing the read sequence with the corresponding genomic sequence. Depending on the strand a read mapped against this can involve looking for C-to-T (as shown here) or G-to-A substitutions.

- **BS-read corresponds to converted original top strand**

```
5'–TTGGC\_ATGTTAAA\_CGTT–3'
5'...\_ccggc\_atgtttaa\_a\_c\_g\_t...3'
```

- **Bismark: A tool to map bisulfite converted sequence reads and determine cytosine methylation states**

https://www.bioinformatics.babraham.ac.uk/projects/bismark/

- **Methylation call**

```
xz.\_H....\_z.h.
```

- **Unmethylated** C in CpG context
- **Methylated** C in CpG context
- **Unmethylated** C in CHG context
- **Methylated** C in CHG context
- **Unmethylated** C in CHH context
- **Methylated** C in CHH context
BS-seq data analysis

Compared with ChIP-seq and RNA-seq, still in relatively early stage.

Questions include:

- **Single dataset analysis:**
 - Segment genome according to methylation status.

- **Comparison of multiple datasets:**
 - Differential methylation (DM) analysis.
Single BS-seq dataset analysis

Detecting the methylation loci/regions:

- Estimate “methylation density” (percentage of cells have methylation) at each C position, which is simply \#methyl/\#total at each CpG site, but:
 - Background error rates need to be considered.
 - Spatial correlation among nearby CpG sites can be utilized to improve estimation.

- Methylated regions (or states) can be determined by smoothing based method (e.g., moving average) using the estimated percentage as input.
Smoothing method

- Can directly smooth the percentages, but that doesn’t consider the uncertainty in percentage estimates.
- A better approach: BSmooth model (Hansen et.al. 2012 Genome Biology).
 - Assumes the true methylation level is a smooth curve of genomic coordinates.
 - The observed counts follow a binomial distribution.
 - Estimate smoothing function with local smoothing estimator

![Graph showing methylation levels and kernel weights](image-url)
BSmooth smoothing

Notations at position j:

- N_j, M_j: total/methylated reads
- π_j: underlying true methylation level
- l_j: location

Model:

- $M_j \sim \text{Bin}(N_j, \pi_j)$
- $\log(\pi_j/(1 - \pi_j)) = \beta_0 + \beta_1 l_j + \beta_2 l_j^2$

Fitting: weighted glm in each 2kb window, where the weights depend on the variances of estimated π_j
Mainly provide functions for smoothing and some visualization.

Implemented in parallel computing environment to speed up the calculation.

```r
M <- matrix(0:8, 3, 3) # Methylation evidence
Cov <- matrix(1:9, 3, 3) # Coverage
BS1 <- BSseq(chr = c("chr1", "chr2", "chr1"),
              pos = c(1,2,3), M = M, Cov = Cov,
              sampleNames = c("A","B", "C"))
BS1 <- BSmooth(BS1)
```
Differential methylation analysis

Comparison of methylation profiles under different biological conditions is of great interests.

- Results from such analysis are: differentially methylated loci (DML) or regions (DMR).

Strategy to detect DML:

- Hypothesis testing at each CpG site.

Strategy to detect DMR:

- Need to combine data from nearby CpG sites because of the spatial correlation.
DML detection based on 2x2 table

At each CpG site, summarize the counts from two samples into a 2x2 table:

<table>
<thead>
<tr>
<th>Sample/Methylation</th>
<th>Total</th>
<th>Methylated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Sample 2</td>
<td>25</td>
<td>19</td>
</tr>
</tbody>
</table>

Chi-square or Fisher’s exact test can be applied. bsseq has function fisherTests for this: fisherTests(BSobj, group1, group2)
Wald-test based

- Uses data with replicates
- The key is to estimate within-group variances
- BSmooth approach (for two-group comparison):
 - Denote the group assignment for \(i^{th} \)
 - Number of replicates in two groups are \(n_1 \) and \(n_2 \)
 - Frame the estimated values into a two-group testing framework:
 \[
 \pi_{ij} = \alpha(I_j) + \beta(I_j)X_i + \epsilon_{i,j}, \quad \epsilon_{i,j} \sim N(0, \sigma_j^2)
 \]
 - Use SAM-like method to estimate \(\sigma_j^2 \), then do Wald test

Multiple loci can be differentially methylated - need one p-value

Fisher’s method for combining p-values given K independent tests:

$$T = -2 \sum_{k=1}^{K} \ln(p_k)$$

$T \sim \chi^2_{2K}$

Other methods: Stouffer-Liptak

Similar to RNA-seq DE analysis, the BS-seq data can be modeled as beta-binomial distribution.

For i^{th} CpG site, j^{th} group and k^{th} replicate, X_{ijk} is the number of reads that show methylation, N_{ijk} is the total number of reads that cover this position and p_{ijk} is the underlying “true” methylation proportion.

$$X_{ijk} | p_{ijk}, N_{ijk} \sim Binomial(N_{ijk}, p_{ijk})$$

Since the true methylation proportions among replicates can be anywhere between 0 and 1, we assume that they follow a beta distribution.

$$p_{ijk} \sim Beta(\mu_{ijk}, \phi_{ij})$$
DSS: Shrinkage-based method

- Beta distribution is parameterized by mean and dispersion, and impose a log-normal prior on dispersion $\phi_{ij} \sim \text{lognormal}(m_{0j}, r_{0j}^2)$, m_{0j} mean and r_{0j}^2 can be estimated from the data.
- Wald test procedure can be derived. For two-group comparison:

$$t_i = \frac{\hat{\mu}_{i1} - \hat{\mu}_{i2}}{\sqrt{\hat{\text{var}}_{i1} - \hat{\text{var}}_{i2}}}$$

- where $\hat{\mu}_{ij}$ are mean methylation levels and $\hat{\text{var}}_{ij}, (j = 1, 2)$ is the estimated variance for group 1 or 2.

Simulation results

- The Wald test with shrunk dispersion performs favorably compared with other methods (2 replicates, 5 replicates)
Things to consider in DMR calling

Coverage depth:

- Should one filter out sites with shallower coverage?

Biological replicates:

- CpG-specific biological variances.
- Small sample estimate of the variance.

Spatial correlation of methylation levels among nearby CpG sites.

- Is smoothing appropriate?
- What if data has low spatial correlation, like in 5hmC.
Differential Methylation analysis using bsseq

- First create BSseq objects
- Use BSmooth function to smooth.
- fisherTests performs Fisher’s exact test, if there’s no replicate.
- BSmooth.tstat performs t-test with replicates.
- dmrFinder calls DMRs based on BSmooth.tstat results.

BSobj = BSmooth(BSobj)
dmlTest=fisherTests(BSobj, group1=c("C1", "C2", "C3"),
 group2=c("N1", "N2", "N3"))
dmr <- dmrFinder(dmlTest)
Differential Methylation analysis using DSS

- Input data has the same format as bsseq.
- DMLtest performs Wald test at each CpG.
- callDML/callDMR calls DML or DMR.
- More options in DML/DMR calling.

```r
dmlTest <- DMLtest(BSobj, group1=c("C1", "C2", "C3"),
                   group2=c("N1", "N2", "N3"),
                   smoothing=TRUE, smoothing.span=500)

dmrs <- callDMR(dmlTest)
```
Conclusion on BS-seq analyses

- Careful in alignments.
- Data modeling is different from ChIP/RNA-seq: Poisson/NB vs. Binomial models.
- DMR calling needs to consider spatial correlation, coverage and biological variances.
- Single read analysis could be very useful.
- A lot of room for method development.
(m)RRBS: (multiplexed) Reduced Representation Bisulfite Sequencing

- Utilizes cutting pattern of MspI enzyme (C^CGG) to systematically digest CpG-poor DNA

- Covers the majority of CpG islands and promoters, and a reasonable number of exons, shores and enhancers

- Advantages:
 - Only need 50-200ng DNA
 - Can be from any species
 - Cost and time
methylKit R package

- Technology: (RB)BS-seq and derivatives, including 5hmC
- Input: Bismark-aligned SAM files, or text-summarized % methylation
- Functionality: QC, clustering, differential methylation of sites/regions, visualization

https://github.com/al2na/methylKit

Methods to detect differentially methylated loci or regions

<table>
<thead>
<tr>
<th>Method</th>
<th>Citation</th>
<th>Designed for</th>
<th>Determines regions or uses predefined</th>
<th>Accounts for covariates</th>
<th>Statistical element used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minfi</td>
<td>Aryee et al., 2014</td>
<td>450k</td>
<td>Determines</td>
<td>Yes</td>
<td>Bump hunting</td>
</tr>
<tr>
<td>IMA</td>
<td>Wang et al., 2012</td>
<td>450k</td>
<td>Predefined</td>
<td>No</td>
<td>Wilcoxon</td>
</tr>
<tr>
<td>COHCAP</td>
<td>Warden et al., 2013</td>
<td>450k or BS-seq</td>
<td>Predefined</td>
<td>Yes</td>
<td>FET, t-test, ANOVA</td>
</tr>
<tr>
<td>BSmooth</td>
<td>Hansen et al., 2012a</td>
<td>BS-seq</td>
<td>Determines</td>
<td>No</td>
<td>Bump hunting on small</td>
</tr>
<tr>
<td>DSS</td>
<td>Feng et al., 2014</td>
<td>BS-seq</td>
<td>Determines</td>
<td>No</td>
<td>Wald</td>
</tr>
<tr>
<td>MOABS</td>
<td>Sun et al., 2014</td>
<td>BS-seq</td>
<td>Determines</td>
<td>No</td>
<td>“Credible methylation”</td>
</tr>
<tr>
<td>BiSeq</td>
<td>Hebestreit et al., 2013</td>
<td>BS-seq</td>
<td>Determines</td>
<td>Yes</td>
<td>Wald</td>
</tr>
<tr>
<td>DMAP</td>
<td>Stockwell et al., 2014</td>
<td>BS-seq</td>
<td>Predefined</td>
<td>Yes</td>
<td>ANOVA, χ^2, FET</td>
</tr>
<tr>
<td>methylKit</td>
<td>Akalin et al., 2012</td>
<td>BS-seq</td>
<td>Predefined</td>
<td>Yes</td>
<td>Logistic regression</td>
</tr>
<tr>
<td>RADMeth</td>
<td>Dolzhenko and Smith, 2014</td>
<td>BS-seq</td>
<td>Determines</td>
<td>Yes</td>
<td>Likelihood-ratio</td>
</tr>
<tr>
<td>methylSig</td>
<td>Park et al., 2014</td>
<td>BS-seq</td>
<td>Predefined</td>
<td>No</td>
<td>Likelihood-ratio</td>
</tr>
<tr>
<td>Bumphunter</td>
<td>Jaffe et al., 2012</td>
<td>General</td>
<td>Determines</td>
<td>Yes</td>
<td>Permutation, smoothing</td>
</tr>
<tr>
<td>ABCD-DNA</td>
<td>Robinson et al., 2012</td>
<td>MeDIP-seq</td>
<td>Predefined</td>
<td>Yes</td>
<td>Likelihood ratio</td>
</tr>
<tr>
<td>DiffBind</td>
<td>Ross-Innes et al., 2012</td>
<td>MeDIP-seq</td>
<td>Predefined</td>
<td>Yes</td>
<td>Likelihood ratio</td>
</tr>
<tr>
<td>M&M</td>
<td>Zhang et al., 2013</td>
<td>MeDIP-seq+MRE-seq</td>
<td>Determines</td>
<td>No</td>
<td>(Similar to) FET</td>
</tr>
</tbody>
</table>
BS-seq data SNP/methylation caller

- Bis-SNP
- MethylExtract
- BS-SNPer
- Etc.