
The Burrows-Wheeler Transform is a reversible
representation with handy properties

• Sort all the possible rotations of original string

• Once BWT(T) is built, all else shown here is discarded
– Matrix will be shown for illustration only

Burrows
Wheeler
Matrix

Last column

BWT(T) T

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. Digital Equipment
Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt

22 Courtes\ of %en /angmead. 8sed with permission.

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt
http://www.langmead-lab.org/teaching-materials/

A text occurrence has the same rank in the
first and last columns

• When we rotate left and sort, the first character retains
its rank. Thus the same text occurrence of a character
has the same rank in the Last and First columns.

T

BWT(T)

Burrows Wheeler
Matrix

Rank: 2

Rank: 2

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt

23 Courtes\ of %en /angmead. 8sed with permission.

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt
http://www.langmead-lab.org/teaching-materials/

The Last to First (LF) function matches
character and rank

BWT(T)

Rank: 2

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt

LF(6, ‘c’) = Occ(‘c’) + Count(6,’c’) = 5

Occ(‘c’) = 4

Count(6,’c’) = 1

Occ(qc) – Number of characters lexically smaller than qc in BWT(T)

Count(idx, qc) – Number of qc characters before position idx in BWT(T)

0
1
2
3
4
5
6

24 Courtes\ of %en /angmead. 8sed with permission.

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt
http://www.langmead-lab.org/teaching-materials/

The Walk Left Algorithm inverts the BWT

i = 0
t = “”
while bwt[i] != ‘$’:
 t = bwt[i] + t
 i = LF(i, bwt[i])

Final t

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt

25
Courtes\ of %en /angmead. 8sed with permission.

http://www.cbcb.umd.edu/~langmead/NCBI_Nov2008.ppt
http://www.langmead-lab.org/teaching-materials/

Lecture 5 – Libraries and Indexing

• Library Complexity
– How do we estimate the complexity of a sequencing

library?

• Full-text Minute-size index (FM Index/BWT)
– How do we convert a genome into an alternate

representation that permits rapid matching of millions
of sequence reads?

• Read Alignment

– How can we use an FM index and BWT to rapidly
align reads to a reference genome?

26

