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-
Protein sequencing

- Fred Sanger and colleagues
sequenced Insulin, the first complete
protein sequence from 1945-1955

- Established that every protein had
a characteristic primary structure

- Moore and Stein developed
semi-automated sequencing
techniques that transformed protein
sequencing

Frederick Sanger. 1958 - his first Nobel Prize
https://onlinelibrarystatic.wiley.com /store/10.1002/pro.5560020715/asset /5560020715_ftp.pdf
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-
1960 - the dawn of computational biology

@ Expanding collection of amino acid sequences in the 1960s

@ Need for computational power to answer questions and study protein
biology

@ Scarcity of academic computers was no longer a major problem

Timeline | Some early milestones in protein and peptide sequencing

Tobacco mosaic
vius coat
159

Oxytocin,
Vasopressin
9

Insulin (a-chain)

Immunoglobuin
y-chain)
446

ysozyme
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216

Cytochrome ¢
105

insulin (B-chain)* (1963)
30 Ribonuclease
124

Haemoglobin (o-chain) Myoglooin Glyceraldehyde-3-phosphate
153 denydrogenase
340
Haemoglobin (B-chain) (1969) Human
145 growih hormone
188

Joel Hagen, “The origins of bioinformatics”, NRG, Dec. 2000.
https://www.nature.com/nrg/journal /v1/n3/full /nrg1200_231a.html
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-
Pioneer of Comp. Biology - Margeret Dayhoff

- Trained in math and quantum
chemistry

- Associate director of the
newly-formed National Biomedical
Research Foundation

- Wrote seminal FORTRAN
programs to derive amino acids
sequences by using partial overlaps
of fragmented amino acid sequences.
- PAM (Point accepted mutation)
matrices

- Realized the applications to nucleic
acids and gene sequences.
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Alignment goals

Alignment - the process by which we discover how or where the read

sequence is similar to the reference sequence. Finding best match of the
read sequence within the reference sequence.

@ The human reference genome is big and complex (~3.2 billion bases)
@ Sequencing data is big and complex (~1 billion short reads/run)
@ Must find a home to each short read in the reference genome

Mikhail Dozmorov
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Alignment goals

Take a read:

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

And a reference sequence:

>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT
CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC
GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT
ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA
ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA
AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA
ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC
TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT
CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA
CCCCGAACCAACC,

GCAATACACTGACCC| CTCAAACTCCTGGATTTTGGATCCACCCAGCGCCTTGGCCTAE)
CTAGCCTTTCTATT.
TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC
AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA
ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC
GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC
TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC
TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA
TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA
CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAG
AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTAT!
CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGT,
ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTAI
AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGT,
AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGT

AAGTAT,
CGTAAQCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTAC GCATAATGAAG
AAGCA GAGCTAAACCTA

GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA
AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG
AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA

Mikhail Dozmorov

Alignment introduction

How do we determine the read’s point of origin

with respect to the reference?

Hypothesis 1:

Read

CTCAAAGACCTGACCTTTGGTGATCCACCC————— GCCTNGGCCTTC

ILEEEE TEEE F L [T LT
CTCAAACTCCTGGATTTTG--GATCCACCCAGCTGGCCTTGGCCTAA

Reference

Hypothesis 2:

Read

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

IIIIIIIIIIII LULLLEEEEETELELEEEEEE TELl
TCAAACTCCTG-CCTTTGGTGATCCACCCGCCTTGGCCTAC

Reference

Which hypothesis is better?

Say hypothesis 2 is correct. Why are there still
mismatches and gaps?
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Sequencing coverage

@ Average number of reads covering genomic bases
o If the genome is 100 Mbp, should we sequence 1M x 100bp reads?
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Library complexity

@ Library complexity is the number of unique molecules in the “

library”
that is sampled by finite sequencing
Library
Com lexity = 4
Sample DNA P y Reads
o
7 dep e
Adapters ”:""" .» - e e
PR ]
Ligation Amplification Sequencing

Mikhail Dozmorov

Alignment introduction Spring 2018 9 /52



N
Modeling approach

@ Assume we have C unique molecules in the library and we obtain N
sequencing reads

@ The probability distribution of the number of times we sequence a
particular molecule is binomial (individual success probability p =1/C,
N trials in total)

@ Assume Poisson sampling as a tractable approximation (rate A = N/C)

@ Finally, truncate the Poisson process: we only see events that
happened between L and R times (we don't know how many molecules
were observed 0 times)
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N
Poisson Distribution

@ The probability of a given number of events occurring in a fixed
interval of time and/or space if these events occur with a known
average rate and independently of the time since the last event.

@ Resembles a normal distribution, but over the positive values, and with
only a single parameter.

Key properties

@ The standard deviation is the square root of the mean.
@ For mean > 5, well approximated by a normal distribution

A

P(k) = e
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Poisson discribution

x <- seq(0, 25, 1)
y <- dpois(x, 10)

plot(x, y)
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Poisson discribution

y5 <- dpois(x, 5); yl1l0 <- dpois(x, 10); yl15 <- dpois(x, 15)
plot(x, y5, col = 1); lines(x, y10); lines(x, y15)
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Estimating library complexity with a Poisson model

@ For Poisson sampling, we can write the (truncated) distribution over x;
the times we sequence the i" molecule as:

1 e A\
Pr(xi|\) = Kay "l
R
KLr(A) =D Pr(xi|A)
x=L

(The probability is 0 if x; is less than L or greater than R)

@ We can estimate the maximum likelihood rate parameter A\ from a
vector of observations x

Mikhail Dozmorov Alignment introduction Spring 2018 14 / 52



Maximum likelihood library size

R

KL,R()\) = Z Pr(x,-]/\)

x=L

@ M unique sequences observed, maximum likelihood library size is

, M
c=_"7"
Kir(N)

@ Approximate solution

M
1 — Poisson(0, \)

C=

Mikhail Dozmorov Alignment introduction Spring 2018 15 / 52



Problem with Poisson distribution

@ Poisson Library Complexity model 150 ‘1000 Genome’ Datasets
@ Estimate library complexity from 10% of uniformly sampled reads

vs. from all reads

Library size estimation consistency, Poisson model

= )
=10 . ."' «® °
: . : .
= ° ° .
é 108 . - o
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] °
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=
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107 10® 10°
Log library complexity from 10% of reads
@ Poisson A = Mean = Variance
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Example sampling distributions, A =2

W =0.005

) 1

. k=0.050

) 1

. =0.500

- Gamma distributed sampling rates
describe the entire population
(library preparation)

) 1

___ Ji=1.000

T 6 B 1
Sampling rate

- Poisson sampling to form a smaller ‘
sample (sequencing)

Example counting distributions, A=2

- Negative binomial distribution *l“l-____

characterizes the resulting 5 .Il.

occurrence histogram =i
.
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The gamma distribution is a “conjugate prior” for
the Poission distribution

A\<e=A
x!

Poisson(x; \) =

Gamma(x, a, f) =

NB(y; o, B) = /Ooo Poisson(y; x) Gamma(x; «, 3) dx
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Negative Binomial model for sequence occurrences

C - library complexity (latent, fit to observed data)
N - number of reads

M - total number of unique sequences

A=N/C

k - dispersion (latent, fit to observed data)

Pr(xi, A, k) = NB(xi|\, k) = NB(x;|n, p)

p=X(A+1/k)
n=1/k

Mikhail Dozmorov Alignment introduction Spring 2018 19 / 52



Simulation results show that the Gamma Possion
works well for non-uniform libraries

@ k=0.1 Poisson: 0.93M  GP: 0.96M
o k=1 Poisson: 0.52M  GP: 1.01M
@ k=10 Poisson: 0.12M  GP: 1.10M
@ k=20 Poisson: 0.07M  GP: 0.68M

True library complexity: 1M unique molecules
Vary k (controls sampling rate variance)
Given 100K reads (A = 0.1), assess estimates from both models

Spring 2018
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Negative Binomial Library Complexity better model
150 ‘1000 Genome’ Datasets

Library size estimation consistency, negative binomial model
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Log library complexity from 10% of reads

@ Data are “overdispersed” (variance greater than mean)
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Marginal value of additional sequencing

@ C - library complexity (latent — estimated)
@ N — number of reads
@ M — number of unique sequences

M can be estimated by (1 — NegativeBinomial(0|\, k)) * C

@ Assume we have r more reads s = (N +r)/N
@ Replace )\ by s x A\ to estimate M’ achieved with r more reads

Mikhail Dozmorov Alignment introduction Spring 2018 22 /52



Marginal value of additional sequencing

Marginal sequencing utility example, C=108
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Sequencing reads
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Genome Assembly Algorithms

Genome Assembly Algorithms
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Problem: Exact String Matching

@ Input: A text string T, where || T|| = n, and a pattern string P, where
[Pl = m.

@ Output: An index i such that T;; ;1 = P; forall 1 <j < m,
i.e. showing that P is a substring of T.
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Genome Assembly Algorithms

Analysis

@ This algorithm might use only n steps if we are lucky, e.g.
T = aaaaaaaaaaa, and P = bbbbbbb.

@ We might need ~ n x m steps if we are unlucky, e.g.
T = aaaaaaaaaaa, and P = aaaaaab.

@ We can't say what happens “in practice”, so we settle for a worst case
analysis.

@ By being more clever, we can reduce the worst case running time to
O(nm).

@ Certain generalizations won't change this, like stopping after the first

occurrence of the pattern.
@ Certain other generalizations seem more complicated, like matching

with gaps.
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Algorithm Complexity

We use the “Big oh" notation to state an upper bound on the number of
steps that an algorithm takes in the worst case. Thus the brute force string
matching algorithm is O(nm), or takes quadratic time.

@ A linear time algorithm, i.e. O(n+ m), is fast enough for almost any
application.

@ A quadratic time algorithm is usually fast enough for small problems,
but not big ones, since 10002 = 1,000, 000 steps is reasonable but
1,000, 0007 is not.

@ An exponential-time algorithm, i.e. O(2") or O(n!), can only be fast
enough for tiny problems, since 22° and 10! are already up to
1,000, 000.

@ Unfortunately, for many alignment problems, there is no known
polynomial algorithm.

@ Even worse, most of these problems can be proven NP-complete,
meaning that no such algorithm can exist!
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String graph

@ Alignments that may be transitively inferred from all pairwise
alignments are removed

@ A graph is created with a vertex for the endpoint of every read

@ Edges are created both for each unaligned interval of a read and for
each remaining pairwise overlap

@ Vertices connect edges that correspond to the reads that overlap

@ When there is allelic variation, alternative paths in the graph are formed

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Genome Assembly Algorithms

String graph

000
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Real-world assembly methods

- OLC - Overlap-Layout-Consensus !
assembly

- DBG - De Bruijn graph assembly

- Both handle unresolvable repeats
by essentially leaving them out

- Unresolvable repeats break the
assembly into fragments Fragments
are contigs (short for contiguous)
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Overlap-layout-consensus (OLC)

|

[ Overlap ] Build overlap graph
¥
( Layout ] Bundle stretches of the overlap graph into contigs

[ Consensus J Pick most likely nucleotide sequence for each contig

!
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Overlap-layout-consensus (OLC)

@ All pairwise alignments (arrows) between reads (solid bars) are
detected.

@ Reads are merged into contigs (below the vertical arrow) until a read
at a repeat boundary (split colour bar) is detected, leading to a repeat
that is unresolved and collapsed into a single copy.

e Joool
aoc | ,

/s

\\/ -
N P
!

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987 /
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Overlap graph formulation

@ Treat each sequence as a “node”
@ Draw an edge between two nodes if there is significant overlap between
the two sequences

@ Hopefully the contig covers all or large number of sequences, once for
each sequence

@ In other words, we are looking for Hamiltonian path in the overlap
graph

@ Pros: straightforward formulation

@ Cons: no efficient accurate algorithm; repeats

Mikhail Dozmorov Alignment introduction Spring 2018 33 /52



Genome Assembly Algorithms

de Bruijn assembly

@ Reads are decomposed into overlapping k-mers.

@ ldentical k-mers are merged and connected by an edge when appearing
adjacently in reads.

@ Contigs are formed by merging chains of k-mers until repeat boundaries
are reached.

@ If a k-mer appears in multiple positions (red segment) in the genome,
it will fragment assemblies and additional graph operations must be
applied to resolve such small repeats.

@ The k-mer approach is ideal for short-read data generated by massively
parallel sequencing (MPS).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987 /
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Genome Assembly Algorithms

de Bruijn assembly

@ An example of the decomposition for k = 3 nucleotides is shown,
although in practice k ranges between 31 and 200 nucleotides.

[ s [cRcJo) — |
b de Bruijn

[TCGATCT..]
00 G @D 470 D

[codoocooce ococcocesess ®®®0000000 DOOOOOOOOO
oocooooOOO® oooooDOoOO® oo OO® [ Jen fen Janen oo Jon [on Jen J oo )
coocoooooo® ®@co0o0000000
ccccoccssse
cooooooooe ocoooooO®e® sccccsssese ocOOCOOOOOO®
coocococooooe esssscoocoo coococooooo®
cocococoooocoe 1 coocoooooo®
N o’

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987 /
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Genome Assembly Algorithms

de Bruijn assembly problems

@ Erroneous data create three types of graph structures:

o “tips” due to errors at the edges of reads,
o “bulges” due to internal read errors or to nearby tips connecting
@ erroneous connections due to cloning errors or to distant merging tips.
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Genome Assembly Algorithms
Velvet: de novo assembly using very short reads

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

1. Sequencing
AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCGAGG TTAGATC ATGAGGC GAGACAG (e.g. Solexa, 454...))
GAGGCTC ATCCGAT AGGCTTT GAGACAG
AGTCGAG  TAGATCC ATGAGGC TAGAGAA
TAGTCGA CTTTAGA CCGATGA  TTAGAGA
CGAGGCT AGATCCG TGAGGCT AGAGACA
TAGTCGA GCTTTAG TCCGATG GCTCTAG
TCGACGC ~ GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
GTCGAGG TCTAGAT ATGAGGC TAGAGAC
AGGCTTT ATCCGAT AGGCTTT GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA

GGCTTTA TCCGATG TTTAGAG 2. Hashmg Linear stretches
CGAGGCT TAGATCC TGAGGCT — GAGACAG
AGTCGAG TTTAGATC ATGAGGC TTAGAGA
GAGGCTT GATCCGA GAGGCTT GAGACAG

(1¥)

‘I‘GAG ATGA GATG CGAT CCGA TCCG ATCC GATC) | AGAT
(9x) (B8x) (5x) (6x) (7x) (7x) (7x) (Bx) ,(Bx)

-

. - e \ AGAR
\ GCTC CTCT TCTA CTAG- J (1x)
(2x) (1x) (2x) (2x) %~ 4 — e e . .

TAGT AGTC GTCG TCGA | CGAG GAGG AGGC GGCT TAGA AGAG GAGA AGAC GACA ACAG
(3x) (7x) (9x) (10x)'._(§x) {:E-Gx) (1‘6)('(113(] GCTT CTTT TTTA TTAG (16X) (9x) (12x) (9x) (Bx) (5x)
—_—
CGAC GACG ACGC (8x) (8x) (Bx) (l2x)
(1x) (1x) (1x)
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Genome Assembly Algorithms

Velvet: de novo assembly using de Bruijn graph

3. Simplification of linear stretches

TAGTCGA CGAG

Y e Bubble

L - - . g e—
GAGG AGGCT —~—— = TAG
=t GCTTTAG
'GACGC
4. Error removal AGATCCGATGAG
e
N
- = - -
TAGTCGAG GAGGCTTTAGA AGAGACAG

https://www.ebi.ac.uk/~zerbino/velvet/

Zerbino, Daniel R., and Ewan Birney. “Velvet: Algorithms for de Novo Short Read Assembly Using de Bruijn Graphs.” Genome
Research 18, no. 5 (May 2008): 821-29. https://doi.org/10.1101/gr.074492.107.
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Issues with reference genome sequence

Issues with reference genome sequence
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Alignment problems

@ The genome being sequenced contains genomic variants

@ Reads contain two kinds of errors: base substitutions and indels. Base
substitutions occur with a frequency from 0.5 — 2%. Indels occur
roughly 10 times less frequently

@ Strand orientation is unknown

@ Computers excel at finding exact matches. Errors should be explicitly
handled

@ “Fuzzy” pattern matching is much more computationally expensive
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Issues with reference genome sequence

Alignment problems

@ > 50% of human genome is repeats - a major problem for fragment
assembly

@ Over 1 million Alu repeats (about 300 bp)

@ About 200,000 LINE repeats (1000 bp and longer)

taaccctaaccctaaccctaaccctaaccctaaccctaaccctaacccta
accctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaac
cctaacccaaccctaaccctaaccctaaccctaaccctaaccctaacccc
taaccctaaccctaaccctaaccctaacctaaccctaaccctaaccctaa
ccceccctaaccctaaccctaaccctaacccctaaccctaaccctaaacce
ccctaaaccctaaccctaaccctaaccctaaccctaaccccaaccccaac
cccaaccccaaccccaaccccaaccctaacccctaaccctaaccctaacc
ctaccctaaccctaaccctaaccctaaccctaaccctaacccctaacccc
taaccctaaccctaaccctaaccctaaccctaaccctaacccctaaccct
aaccctaaccctaaccctcgeggtaccctcagecggeccgeccgeccggg
tctgacctgaggagaactgtgctccgecttcagagtaccaccgaaatctg
tgcagaggacaacgcagctccgecctegeggtgetetecgggtetgtget
gaggagaacgcaactccgeccggegcaggegcagagaggcgegecgegecg
gcgecaggegcagacacatgectagegegtcggggtggaggegtggegeagg
cgcagagaggcgegeegegecggegeaggegeagagacacatgetaccge
gtccaggggtggaggegtggegeaggegeagagaggegeaccgegeegge
gcaggcgcagagacacatgctagegegtccaggggtggaggegtggegea
ggcgeagagacgcaagectacgggegggggttgggggegegtgtgttgea
ggagcaaagtcgcacggegeegggetggggeggeeggagggtggegeegt
gcacgcgcagaaactcacgtcacggtggecgeggegecagagacgggtagaa
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genome seq

Alignment with repeats
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Issues with reference genome sequence

@ Since we rely on fragment overlaps to identify their position, we must
sample sufficient fragments to ensure enough overlaps.

@ Let T be the length of the target molecule being sequenced using n
random fragments of length /, where we recognize all overlaps of
length t or greater.

@ The Lander-Waterman equation gives the expected number of gaps
g as:

—n(l—t)
T

g = ne
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Issues with reference genome sequence

Calculations

@ Suppose we have fragments of length 1. We sequence as many
fragments as there is bases. Thus, T = n and each fragment is length
1. The probability p that base i is not sampled is:

(n—l)” 1
p= - >
n e

Mikhail Dozmorov Alignment introduction Spring 2018 44 / 52



Issues with reference genome sequence

@ Sequence-coverage gaps - Sequencing gaps occur, under the simplest
condition, where no sequence reads have been sampled for a particular portion
of the genome

@ Segmental duplication-associated gaps - Over one-third (206/540) of the
euchromatic gaps in the human reference genome (GRCh38) are flanked by
large, highly identical segmental duplications

@ Satellite-associated gaps - These include short and long runs of tandem
repeats designated as short tandem repeats (STRs; also known as
microsatellites), variable number of tandem repeats (VNTRs; also known as
macrosatellites) and Mb-sized centromeric satellite repeats

@ Muted gaps - Muted gaps are defined as regions that are inadvertently
closed in an assembly but that actually show additional or different sequences
in the vast majority of individuals

@ Allelic variation gaps - Some regions of a genome also show extraordinary
patterns of allelic variation, often reflecting deep evolutionary coalescence
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Issues with reference genome sequence
v
2 (— I I —

T e— 000 ==

e | ———
Sequence coverage gaps Segmental duplication-associated gaps

C d
e (sl B B BB B BB

Satellite-associated gaps

Muted gaps

http://www.nature.com/nrg/journal /v16/n11/full /nrg3933.html
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Issues with reference genome sequence

Coverage

@ The coverage of a sequencing project is the ratio of the total
sequenced fragment length to the genome length, i.e. n//T.

@ Gaps are very difficult and expensive to close in any sequencing
strategy, meaning that very high coverage is necessary to use shotgun
sequencing on a large genome.
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Evaluating Assemblies

o Coverage is a measure of how deeply a region has been sequenced

@ The Lander-Waterman model predicts 8-10 fold coverage is needed to
minimze the number of contigs for a 1 Mbp genome

@ The Nb5O0 length is a statistics in genomics defined as the shortest
contig at which half of the total length of the assembly is made of
contigs of that length or greater.

@ It is commonly used as a metric to summarize the contiguity of an
assembly.
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Longer sequencing to complete human genomes

@ Human genome is incomplete - ~160 gaps in euchromatin
~55% of them have been closed using Oxford Nanopore technology

LETTER

d0i:10.1038/nature13907

Resolving the complexity of the human genome
using single-molecule sequencing

Mark J. P. Chaisson', John Huddleston"?, Megan Y. Dennis', Peter H. Sudmant', Maika Malig', Fereydoun Hormozdiari',

-4

Francesca An(onacc\1 Urvashl Surti*, Richard Sandstrom', Matlhew Boitano®, Jane M. Landolm‘ John A. Stamatoyannopoulos',

Michael W. Hunkapiller®, Jonas Korlachi & Evan E. Eichler"?

The human genome is arguably the most complete mammalian
by, . ]

for recruiting addmonal sequence reads for assembly (Supplemenlary

ing this approach, we closed

40others (60b adding 398 kb and 721 kb of novel scquence

0
and aspects of its structural variation remain poorly und d

years. nfut its complcﬁon"‘ To ndennfy ‘missing sequence and gen-

to the genome, respectively (Supplementary Table 4). The closed gaps

etic q danalyse a haploid hi in the human genome were enriched for simple repeats, long tandem
(CHM1) using singl lecul I-time DNA '°.Weclose repeats,and high (G+C) content (Fig. 1) butalso included novel exons
or extend 5% of GRCh37  (Supp y Table 20) and putative regulatory sequences based on
reference genome—78% of which carried long runs of DNaseIhyp followed
short tandem repeats, oﬁzn several ki.lobuel in lengtll, y‘*‘ h ighp DNA (ChIP-seq) analysis (Suppl

‘within (G+C)-rich We i identified asignificant 15-fold enrich of short
0f26,079 i i the b ir level, includ- Iandem repeats (STRs) ‘when compared toa random sample (P < 0.00001)
ingil i complex i i dlong tracts of tandem repeats.  (Fig. 1a). A total of 78% (39 out of 50) of the closed gap sequences were

https://www.nature.com/nature/journal /v517/n7536 /full /nature13907.html
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Improving the Human Reference Genome(s)
Reference Genomes Improvement

MGI's commitment to enhancing and diversifying human reference
genomes

Reference Genomes Improvement Details

‘The Human Genome Project (HGP) produced the human reference f

genome assembly, a database of DNA sequence that represents an Specific Aims

example of a full human genome. When researchers sequence human We plan to identify and resolve issues (misassemblies, sequence errors,
genomes, they compare, or “align", their results to this reference. While and gaps) within the current reference GRCh38. We will add substantial
this assembly is one of the most frequently utilized resources in to the reference to lysis of
biomedical research, de novo genome assembly remains a significant  biomedically important regions across the genome. We will accomplish
challenge despite increase in throughput and decrease of sequence cost this by completely finishing (“platinum’) two genomes (CHM1 and

over the past decade. Alignment of human sequence reads to the CHM13) and performing targeted finishing (‘gold") in additional
reference assembiy is & ciical aspect o successful data analysis, and - genomes. We defne platinum genome as a cantiguous, haplotype-
several published reports identify regions of the that  resolved of the is defined as
were previously impossible to analyze due to he imitations ofthe ahigh-quality, hig of the g

available sequencing complex g 3 fon o rtca rgians.

http://genome.wustl.edu/projects/detail /reference- genomes-improvement/

Jain, Miten, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R Tyson, et al. “Nanopore
Sequencing and Assembly of a Human Genome with Ultra-Long Reads.” Nature Biotechnology, January 29, 2018.
https://doi.org/10.1038 /nbt.4060. - MinlON nanopore sequencing to sequence human genome. Closed 12 gaps, fully typed
MHC region. PCR-free sequencing preserves epigenetic modifications. Canu genome assembler. GraphMap, Minimap2 for
mapping long reads. SVTyper, LUMPY for structural variants.

https:/ /www.genengnews.com/gen-exclusives/first-nanopore- sequencing- of-human-genome/77901044
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Issues with reference genome sequence

Longer reads - more errors

@ The increased read length and error rate of single-molecule sequencing
has challenged genome assembly programs originally designed for
shorter, highly accurate reads

@ Several new approaches have been developed to address this, roughly
categorized as hybrid, hierarchical, or direct

o Hybrid methods use single-molecule reads to reconstruct the
long-range structure of the genome, but rely on complementary short
reads for accurate base calls

o Hierarchical methods do not require a secondary technology and
instead use multiple rounds of read overlapping (alignment) and
correction to improve the quality of the single-mol- ecule reads prior to
assembly

o Direct methods attempt to assemble single-molecule reads from a
single overlapping step without any prior correction

@ Hierarchical strategy is the most suitable to produce continuous de
novo assembly
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Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation

@ Overlapping and assembly algorithm
@ MinHash alignment process to overlap noisy sequencing reads
@ Adaptive k-mer weighting to probabilistically handle repeats
@ A modification of the greedy “best overlap graph” that avoids
collapsing diverged repeats and haplotypes.
Koren, Sergey, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H. Bergman, and Adam M. Phillippy. “Canu:

Scalable and Accurate Long-Read Assembly via Adaptive k-Mer Weighting and Repeat Separation.” Genome Research 27, no. 5
(May 2017): 722-36. https://doi.org/10.1101/gr.215087.116.

https://github.com/marbl/canu, https://canu.readthedocs.io/en/latest/
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