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Protein sequencing

- Fred Sanger and colleagues
sequenced Insulin, the first complete
protein sequence from 1945-1955
- Established that every protein had
a characteristic primary structure
- Moore and Stein developed
semi-automated sequencing
techniques that transformed protein
sequencing

Frederick Sanger. 1958 - his first Nobel Prize
https://onlinelibrarystatic.wiley.com/store/10.1002/pro.5560020715/asset/5560020715_ftp.pdf
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1960 - the dawn of computational biology

Expanding collection of amino acid sequences in the 1960s
Need for computational power to answer questions and study protein
biology
Scarcity of academic computers was no longer a major problem

Joel Hagen, “The origins of bioinformatics”, NRG, Dec. 2000.
https://www.nature.com/nrg/journal/v1/n3/full/nrg1200_231a.html
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Pioneer of Comp. Biology - Margeret Dayhoff

- Trained in math and quantum
chemistry
- Associate director of the
newly-formed National Biomedical
Research Foundation
- Wrote seminal FORTRAN
programs to derive amino acids
sequences by using partial overlaps
of fragmented amino acid sequences.
- PAM (Point accepted mutation)
matrices
- Realized the applications to nucleic
acids and gene sequences.
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The genomics workflow

http://www.jpathinformatics.org/viewimage.asp?img=JPatholInform_2012_3_1_40_103013_u3.jpg
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Alignment goals

Alignment - the process by which we discover how or where the read
sequence is similar to the reference sequence. Finding best match of the
read sequence within the reference sequence.

The human reference genome is big and complex (~3.2 billion bases)
Sequencing data is big and complex (~1 billion short reads/run)
Must find a home to each short read in the reference genome
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Alignment goals
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Sequencing coverage

Average number of reads covering genomic bases
If the genome is 100 Mbp, should we sequence 1M x 100bp reads?
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Library complexity

Library complexity is the number of unique molecules in the “library”
that is sampled by finite sequencing
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Modeling approach

Assume we have C unique molecules in the library and we obtain N
sequencing reads
The probability distribution of the number of times we sequence a
particular molecule is binomial (individual success probability p = 1/C ,
N trials in total)
Assume Poisson sampling as a tractable approximation (rate λ = N/C)
Finally, truncate the Poisson process: we only see events that
happened between L and R times (we don’t know how many molecules
were observed 0 times)
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Poisson Distribution

The probability of a given number of events occurring in a fixed
interval of time and/or space if these events occur with a known
average rate and independently of the time since the last event.
Resembles a normal distribution, but over the positive values, and with
only a single parameter.

Key properties

The standard deviation is the square root of the mean.
For mean > 5, well approximated by a normal distribution

P(k) = λk

k! e−λ
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Poisson discribution

x <- seq(0, 25, 1)
y <- dpois(x, 10)
plot(x, y)
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Poisson discribution

y5 <- dpois(x, 5); y10 <- dpois(x, 10); y15 <- dpois(x, 15)
plot(x, y5, col = 1); lines(x, y10); lines(x, y15)
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Estimating library complexity with a Poisson model

For Poisson sampling, we can write the (truncated) distribution over xi
the times we sequence the i th molecule as:

Pr(xi |λ) = 1
KL,R(λ) ∗

e−λλxi

xi !

KL,R(λ) =
R∑

x=L
Pr(xi |λ)

(The probability is 0 if xi is less than L or greater than R)
We can estimate the maximum likelihood rate parameter λ from a
vector of observations x
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Maximum likelihood library size

KL,R(λ) =
R∑

x=L
Pr(xi |λ)

M unique sequences observed, maximum likelihood library size is

Ĉ = M
KL,R(λ)

Approximate solution

Ĉ = M
1− Poisson(0, λ)
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Problem with Poisson distribution

Poisson Library Complexity model 150 ‘1000 Genome’ Datasets
Estimate library complexity from 10% of uniformly sampled reads
vs. from all reads

Poisson λ = Mean = Variance
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- Gamma distributed sampling rates
describe the entire population
(library preparation)

- Poisson sampling to form a smaller
sample (sequencing)

- Negative binomial distribution
characterizes the resulting
occurrence histogram
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The gamma distribution is a “conjugate prior” for
the Poission distribution

Poisson(x ;λ) = λxe−λ
x !

Gamma(x , α, β) = βαxα−1e−βx

Γ(α)

NB(y ;α, β) =
∫ ∞
0

Poisson(y ; x) Gamma(x ;α, β) dx
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Negative Binomial model for sequence occurrences

C - library complexity (latent, fit to observed data)
N - number of reads
M - total number of unique sequences
λ = N/C
k - dispersion (latent, fit to observed data)

Pr(xi , λ, k) = NB(xi |λ, k) = NB(xi |n, p)

p = λ/(λ+ 1/k)
n = 1/k
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Simulation results show that the Gamma Possion
works well for non-uniform libraries

True library complexity: 1M unique molecules
Vary k (controls sampling rate variance)
Given 100K reads (λ = 0.1), assess estimates from both models

k=0.1 Poisson: 0.93M GP: 0.96M
k=1 Poisson: 0.52M GP: 1.01M
k=10 Poisson: 0.12M GP: 1.10M
k=20 Poisson: 0.07M GP: 0.68M
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Negative Binomial Library Complexity better model
150 ‘1000 Genome’ Datasets

Data are “overdispersed” (variance greater than mean)
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Marginal value of additional sequencing

C – library complexity (latent – estimated)
N – number of reads
M – number of unique sequences

M can be estimated by (1− NegativeBinomial(0|λ, k)) ∗ C

Assume we have r more reads s = (N + r)/N
Replace λ by s ∗ λ to estimate M ′ achieved with r more reads
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Marginal value of additional sequencing
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Genome Assembly Algorithms

Genome Assembly Algorithms
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Genome Assembly Algorithms

Problem: Exact String Matching

Input: A text string T , where ‖T‖ = n, and a pattern string P, where
‖P‖ = m.
Output: An index i such that Ti+j−1 = Pj for all 1 ≤ j ≤ m,
i.e. showing that P is a substring of T .
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Genome Assembly Algorithms

Analysis

This algorithm might use only n steps if we are lucky, e.g.
T = aaaaaaaaaaa, and P = bbbbbbb.
We might need ∼ n ×m steps if we are unlucky, e.g.
T = aaaaaaaaaaa, and P = aaaaaab.
We can’t say what happens “in practice”, so we settle for a worst case
analysis.
By being more clever, we can reduce the worst case running time to
O(nm).
Certain generalizations won’t change this, like stopping after the first
occurrence of the pattern.
Certain other generalizations seem more complicated, like matching
with gaps.
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Genome Assembly Algorithms

Algorithm Complexity
We use the “Big oh” notation to state an upper bound on the number of
steps that an algorithm takes in the worst case. Thus the brute force string
matching algorithm is O(nm), or takes quadratic time.

A linear time algorithm, i.e. O(n + m), is fast enough for almost any
application.
A quadratic time algorithm is usually fast enough for small problems,
but not big ones, since 10002 = 1, 000, 000 steps is reasonable but
1, 000, 0002 is not.
An exponential-time algorithm, i.e. O(2n) or O(n!), can only be fast
enough for tiny problems, since 220 and 10! are already up to
1, 000, 000.
Unfortunately, for many alignment problems, there is no known
polynomial algorithm.
Even worse, most of these problems can be proven NP-complete,
meaning that no such algorithm can exist!
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Genome Assembly Algorithms

String graph

Alignments that may be transitively inferred from all pairwise
alignments are removed
A graph is created with a vertex for the endpoint of every read
Edges are created both for each unaligned interval of a read and for
each remaining pairwise overlap
Vertices connect edges that correspond to the reads that overlap
When there is allelic variation, alternative paths in the graph are formed

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Genome Assembly Algorithms

String graph

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Genome Assembly Algorithms

Real-world assembly methods

- OLC - Overlap-Layout-Consensus
assembly
- DBG - De Bruijn graph assembly
- Both handle unresolvable repeats
by essentially leaving them out
- Unresolvable repeats break the
assembly into fragments Fragments
are contigs (short for contiguous)
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Genome Assembly Algorithms

Overlap-layout-consensus (OLC)
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Genome Assembly Algorithms

Overlap-layout-consensus (OLC)

All pairwise alignments (arrows) between reads (solid bars) are
detected.
Reads are merged into contigs (below the vertical arrow) until a read
at a repeat boundary (split colour bar) is detected, leading to a repeat
that is unresolved and collapsed into a single copy.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Genome Assembly Algorithms

Overlap graph formulation

Treat each sequence as a “node”
Draw an edge between two nodes if there is significant overlap between
the two sequences
Hopefully the contig covers all or large number of sequences, once for
each sequence
In other words, we are looking for Hamiltonian path in the overlap
graph
Pros: straightforward formulation
Cons: no efficient accurate algorithm; repeats
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Genome Assembly Algorithms

de Bruijn assembly

Reads are decomposed into overlapping k-mers.
Identical k-mers are merged and connected by an edge when appearing
adjacently in reads.
Contigs are formed by merging chains of k-mers until repeat boundaries
are reached.
If a k-mer appears in multiple positions (red segment) in the genome,
it will fragment assemblies and additional graph operations must be
applied to resolve such small repeats.
The k-mer approach is ideal for short-read data generated by massively
parallel sequencing (MPS).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Genome Assembly Algorithms

de Bruijn assembly

An example of the decomposition for k = 3 nucleotides is shown,
although in practice k ranges between 31 and 200 nucleotides.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745987/
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Genome Assembly Algorithms

de Bruijn assembly problems

Erroneous data create three types of graph structures:
“tips” due to errors at the edges of reads,
“bulges” due to internal read errors or to nearby tips connecting
erroneous connections due to cloning errors or to distant merging tips.
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Genome Assembly Algorithms

Velvet: de novo assembly using very short reads
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Genome Assembly Algorithms

Velvet: de novo assembly using de Bruijn graph

https://www.ebi.ac.uk/~zerbino/velvet/

Zerbino, Daniel R., and Ewan Birney. “Velvet: Algorithms for de Novo Short Read Assembly Using de Bruijn Graphs.” Genome
Research 18, no. 5 (May 2008): 821–29. https://doi.org/10.1101/gr.074492.107.
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Issues with reference genome sequence

Issues with reference genome sequence
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Issues with reference genome sequence

Alignment problems

The genome being sequenced contains genomic variants
Reads contain two kinds of errors: base substitutions and indels. Base
substitutions occur with a frequency from 0.5 – 2%. Indels occur
roughly 10 times less frequently
Strand orientation is unknown
Computers excel at finding exact matches. Errors should be explicitly
handled
“Fuzzy” pattern matching is much more computationally expensive
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Issues with reference genome sequence

Alignment problems

> 50% of human genome is repeats - a major problem for fragment
assembly
Over 1 million Alu repeats (about 300 bp)
About 200,000 LINE repeats (1000 bp and longer)
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Issues with reference genome sequence

Alignment with repeats
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Issues with reference genome sequence

Gaps

Since we rely on fragment overlaps to identify their position, we must
sample sufficient fragments to ensure enough overlaps.
Let T be the length of the target molecule being sequenced using n
random fragments of length l , where we recognize all overlaps of
length t or greater.
The Lander-Waterman equation gives the expected number of gaps
g as:

g = ne
−n(l−t)

T
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Issues with reference genome sequence

Calculations

Suppose we have fragments of length 1. We sequence as many
fragments as there is bases. Thus, T = n and each fragment is length
1. The probability p that base i is not sampled is:

p =
(n − 1

n

)n
− > 1

e
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Issues with reference genome sequence

Gaps

Sequence-coverage gaps - Sequencing gaps occur, under the simplest
condition, where no sequence reads have been sampled for a particular portion
of the genome
Segmental duplication-associated gaps - Over one-third (206/540) of the
euchromatic gaps in the human reference genome (GRCh38) are flanked by
large, highly identical segmental duplications
Satellite-associated gaps - These include short and long runs of tandem
repeats designated as short tandem repeats (STRs; also known as
microsatellites), variable number of tandem repeats (VNTRs; also known as
macrosatellites) and Mb-sized centromeric satellite repeats
Muted gaps - Muted gaps are defined as regions that are inadvertently
closed in an assembly but that actually show additional or different sequences
in the vast majority of individuals
Allelic variation gaps - Some regions of a genome also show extraordinary
patterns of allelic variation, often reflecting deep evolutionary coalescence
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Issues with reference genome sequence

Gaps

http://www.nature.com/nrg/journal/v16/n11/full/nrg3933.html
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Issues with reference genome sequence

Coverage

The coverage of a sequencing project is the ratio of the total
sequenced fragment length to the genome length, i.e. nl/T .
Gaps are very difficult and expensive to close in any sequencing
strategy, meaning that very high coverage is necessary to use shotgun
sequencing on a large genome.
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Issues with reference genome sequence

Evaluating Assemblies

Coverage is a measure of how deeply a region has been sequenced
The Lander-Waterman model predicts 8-10 fold coverage is needed to
minimze the number of contigs for a 1 Mbp genome
The N50 length is a statistics in genomics defined as the shortest
contig at which half of the total length of the assembly is made of
contigs of that length or greater.
It is commonly used as a metric to summarize the contiguity of an
assembly.
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Issues with reference genome sequence

Longer sequencing to complete human genomes

Human genome is incomplete - ~160 gaps in euchromatin
~55% of them have been closed using Oxford Nanopore technology

https://www.nature.com/nature/journal/v517/n7536/full/nature13907.html
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Issues with reference genome sequence

Improving the Human Reference Genome(s)

http://genome.wustl.edu/projects/detail/reference-genomes-improvement/

Jain, Miten, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R Tyson, et al. “Nanopore
Sequencing and Assembly of a Human Genome with Ultra-Long Reads.” Nature Biotechnology, January 29, 2018.
https://doi.org/10.1038/nbt.4060. - MinION nanopore sequencing to sequence human genome. Closed 12 gaps, fully typed
MHC region. PCR-free sequencing preserves epigenetic modifications. Canu genome assembler. GraphMap, Minimap2 for
mapping long reads. SVTyper, LUMPY for structural variants.
https://www.genengnews.com/gen-exclusives/first-nanopore-sequencing-of-human-genome/77901044
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Issues with reference genome sequence

Longer reads - more errors

The increased read length and error rate of single-molecule sequencing
has challenged genome assembly programs originally designed for
shorter, highly accurate reads
Several new approaches have been developed to address this, roughly
categorized as hybrid, hierarchical, or direct

Hybrid methods use single-molecule reads to reconstruct the
long-range structure of the genome, but rely on complementary short
reads for accurate base calls
Hierarchical methods do not require a secondary technology and
instead use multiple rounds of read overlapping (alignment) and
correction to improve the quality of the single-mol- ecule reads prior to
assembly
Direct methods attempt to assemble single-molecule reads from a
single overlapping step without any prior correction

Hierarchical strategy is the most suitable to produce continuous de
novo assembly
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Issues with reference genome sequence

Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation

Overlapping and assembly algorithm
MinHash alignment process to overlap noisy sequencing reads
Adaptive k-mer weighting to probabilistically handle repeats
A modification of the greedy “best overlap graph” that avoids
collapsing diverged repeats and haplotypes.

Koren, Sergey, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H. Bergman, and Adam M. Phillippy. “Canu:
Scalable and Accurate Long-Read Assembly via Adaptive k-Mer Weighting and Repeat Separation.” Genome Research 27, no. 5
(May 2017): 722–36. https://doi.org/10.1101/gr.215087.116.

https://github.com/marbl/canu, https://canu.readthedocs.io/en/latest/
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