Pathway and Functional Enrichment Analysis Methods

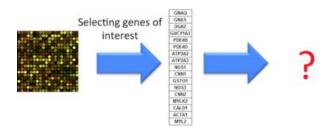
Wednesday, November 9, 2016

Mikhail Dozmorov, Ph.D. mikhail.dozmorov@vcuhealth.org

https://github.com/mdozmorov/presentations

Overview

- · Why enrichment analysis?
- · What is enrichment analysis?
- · Gene ontology and pathways
- GENE ontology and pathways enrichment
- GENOMIC REGIONS enrichment
- Tools and references


Overview

- · Why enrichment analysis?
- · What is enrichment analysis?
- Gene ontology and pathways
- · GENE ontology and pathways enrichment
- · GENOMIC REGIONS enrichment
- · Tools and references

2/68

Why enrichment analysis?

- · Human genome contains ~20,000-25,000 genes
- · Each gene has multiple functions
- If 1,000 genes have changed in an experimental condition, it may be difficult to understand what they do

//68 4/68

Birds of a feather flock together

- Genes with similar expression patterns share similar functions
- Similar (common) functions characterize a group of genes

Why enrichment analysis?

- High level understanding of the biology behind gene expression Interpretation!
- Translating changes of hundreds/thousands of differentially expressed genes into a few biological processes (reducing dimensionality)

Birds of a feather flock together

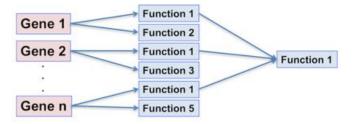
- · Genes with similar expression patterns share similar functions
- · Similar (common) functions characterize a group of genes

Welcome to GeneFriends ---RNAseq--GeneFriends employs a RNAseq based gene co-expression network for candidate gene prioritization, based on a seed list of genes, and for functional annotation of unknown genes in human and mouse.

- People with similar genetic patterns are likely friends
- Christakis NA, Fowler JH. "Friendship and natural selection." PNAS 2014 https://www.ncbi.nlm.nih.gov/pubmed/25024208

6/68

Overview


5/68

- Why enrichment analysis?
- · What is enrichment analysis?
- Gene ontology and pathways
- Enrichment analysis
- · GENE ontology and pathways enrichment
- · GENOMIC REGIONS enrichment
- Tools and references

7/68 8/

What is enrichment analysis

Enrichment analysis - summarizing common functions associated with a group of objects

What is enrichment analysis? - statistical definition

Enrichment analysis – detection whether a group of objects has certain properties more (or less) frequent than can be expected by chance

Jar 1

10/68

Classification of genes

Gene set - a priori classification of genes into biologically relevant groups (sets)

- · Members of the same biochemical pathways
- Genes annotated with the same molecular function
- Transcripts expressed in the same cellular compartments
- Co-regulated/co-expressed genes
- Genes located on the same cytogenetic band

Overview

9/68

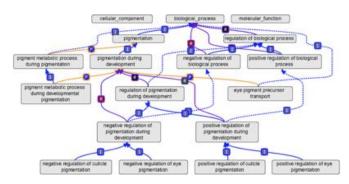
- Why enrichment analysis?
- What is enrichment analysis?
- · Gene ontology and pathways
- · GENE ontology and pathways enrichment
- · GENOMIC REGIONS enrichment
- Tools and references

11/68

Annotation databases and ontologies

- An annotation database annotates genes with functions or properties sets of genes with shared functions
- · Structured prior knowledge about genes

13/68


Gene ontology

- An ontology is a formal (hierarchical) representation of concepts and the relationships between them.
- The objective of GO is to provide controlled vocabularies of terms for the description of gene products.
- These terms are to be used as attributes of gene products, facilitating uniform queries across them.

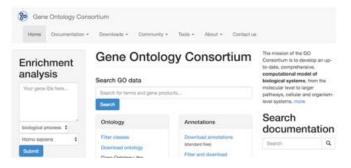
14/68

Gene ontology hierarchy

 Terms are related within a hierarchy using "is-a", "part-of" and other connectors

Gene ontology structure

Gene ontology describes multiple levels of detail of gene function.


- Molecular Function the tasks performed by individual gene products; examples are transcription factor and DNA helicase
- Biological Process broad biological goals, such as mitosis or purine metabolism, that are accomplished by ordered assemblies of molecular functions
- Cellular Component subcellular structures, locations, and macromolecular complexes; examples include nucleus, telomere, and origin recognition complex

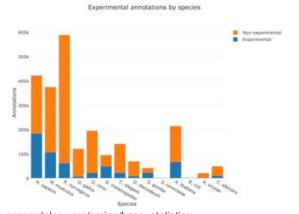
15/68

Gene ontology database

http://geneontology.org/

https://www.ebi.ac.uk/QuickGO/

Gene ontologies are not created equal

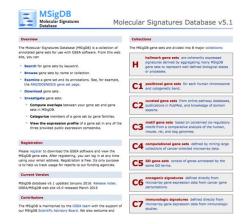

- · Different levels of evidence:
 - Experimental
 - Computational analysis
 - Author Statement
 - Curator Statement
 - Inferred from electronic annotation

http://geneontology.org/page/evidence-code-decision-tree

17/68 18/68

Gene ontologies are not created equal

http://amigo.geneontology.org/amigo/base_statistics


Gene ontologies for model organisms

- Mouse Genome Database (MGD) and Gene Expression Database (GXD) (Mus musculus) http://www.informatics.jax.org/
- · Rat Genome Database (RGD) (Rattus norvegicus) http://rgd.mcw.edu/
- · FlyBase (Drosophila melanogaster) http://flybase.org/
- Berkeley Drosophila Genome Project (BDGP) http://www.fruitfly.org/
- WormBase (Caenorhabditis elegans) http://www.wormbase.org/
- · Zebrafish Information Network (ZFIN) (Danio rerio) http://zfin.org/
- · Saccharomyces Genome Database (SGD) (Saccharomyces cerevisiae) http://www.yeastgenome.org/
- · The Arabidopsis Information Resource (TAIR) (Arabidopsis thaliana) https://www.arabidopsis.org/
- · Gramene (grains, including rice, Oryza) http://www.gramene.org/
- · dictyBase (Dictyostelium discoideum) http://dictybase.org/
- GeneDB (Schizosaccharomyces pombe, Plasmodium falciparum, Leishmania major and Trypanosoma brucei) http://www.genedb.org/

19/68 20/6

MSigDb - Molecular Signatures Database

http://software.broadinstitute.org/gsea/msigdb/

21/68

Pathways

- An ordered series of molecular events that leads to the creation new molecular product, or a change in a cellular state or process.
- Genes often participate in multiple pathways think about genes having multiple functions

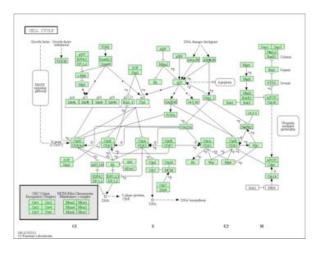
http://biochemical-pathways.com/#/map/1

MSigDb - Molecular Signatures Database

https://github.com/stephenturner/msigdf

- H, hallmark gene sets are coherently expressed signatures derived by aggregating many MSigDB gene sets to represent well-defined biological states or processes.
- C1, positional gene sets for each human chromosome and cytogenetic band.
- C2, curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.
- C3, motif gene sets based on conserved cis-regulatory motifs from a comparative analysis of the human, mouse, rat, and dog genomes.
- C4, computational gene sets defined by mining large collections of canceroriented microarray data.
- · C5, GO gene sets consist of genes annotated by the same GO terms.
- C6, oncogenic signatures defined directly from microarray gene expression data from cancer gene perturbations.
- C7, immunologic signatures defined directly from microarray gene expression data from immunologic studies.

22/68


KEGG pathway database

- KEGG: Kyoto Encyclopedia of Genes and Genomes is a collection of biological information compiled from published material = curated database.
- Includes information on genes, proteins, metabolic pathways, molecular interactions, and biochemical reactions associated with specific organisms
- Provides a relationship (map) for how these components are organized in a cellular structure or reaction pathway.

http://www.genome.jp/kegg/

23/68 24/6

KEGG pathway diagram

Reactome

- Curated human pathways encompassing metabolism, signaling, and other biological processes.
- · Every pathway is traceable to primary literature.

http://www.reactome.org/

25/68 26/68

Reactome pathway diagram

Other pathway databases

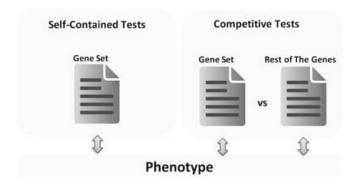
- PathwayCommons, version 8 has over 42,000 pathways from 22 data sources, http://www.pathwaycommons.org/
- PathGuide, lists ~550 pathway related databases, http://www.pathguide.org/
- WikiPathways, community-curated pathways, http://wikipathways.org/

27/68 28/6

Genes to networks

- · GeneMania, networks based on different properties, http://genemania.org
- STRING, protein-protein interaction networks, http://string-db.org
- Genes2Networks, protein-protein interaction networks, http://amp.pharm.mssm.edu/X2K/#g2n

Overview


- · Why enrichment analysis?
- What is enrichment analysis?
- · Gene ontology and pathways
- · GENE ontology and pathways enrichment
- · GENOMIC REGIONS enrichment
- · Tools and references

29/68 30/68

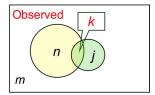
Enrichment analysis

Null hypothesis

- Self-contained H₀: genes in the gene set do not have any association with the pheontype
- · Problem: restrictive, use information only from a gene set

Enrichment analysis

Null hypothesis


- Competitive H_0 : genes in the gene set have the same level of association with a given phenotype as genes in the complement gene set
- · Problem: wrong assumption of independent gene sampling

/68 32/6

Approach 1

Overrepresentation analysis, Hypergeometric test

- *m* is the total number of genes
- j is the number of genes are in the functional category
- *n* is the number of differentially expressed genes
- · k is the number of differentially expressed genes in the category

Approach 1

Overrepresentation analysis, Hypergeometric test

- *m* is the total number of genes
- *j* is the number of genes are in the functional category
- · *n* is the number of differentially expressed genes
- $\cdot k$ is the number of differentially expressed genes in the category

The expected value of k would be $k_e = (n/m) * j$.

If $k>k_e$, functional category is said to be enriched, with a ratio of enrichment $r=k/k_e$

33/68 34/68

Approach 1

Overrepresentation analysis, Hypergeometric test

- *m* is the total number of genes
- *j* is the number of genes are in the functional category
- \cdot n is the number of differentially expressed genes
- · *k* is the number of differentially expressed genes in the category

	Diff. exp. genes	Not Diff. exp. genes	Total	
In gene set	k	j-k	j	
Not in gene set	n-k	m-n-j+k	m-j	
Total	n	m-n	m	

Approach 1

Overrepresentation analysis, Hypergeometric test

- \cdot *m* is the total number of genes
- \cdot *j* is the number of genes are in the functional category
- \cdot n is the number of differentially expressed genes
- $\cdot k$ is the number of differentially expressed genes in the category

What is the probability of having k or more genes from the category in the selected n genes?

$$P = \sum_{i=k}^{n} \frac{\binom{m-j}{n-i} \binom{j}{i}}{\binom{m}{n}}$$

35/68 36/

Approach 1

Overrepresentation analysis, Hypergeometric test

- *m* is the total number of genes
- *j* is the number of genes are in the functional category
- · *n* is the number of differentially expressed genes
- · k is the number of differentially expressed genes in the category

k < (n/m) * j - underrepresentation. Probability of k or less genes from the category in the selected n genes?

$$P = \sum_{i=0}^{k} \frac{\binom{m-j}{n-i} \binom{j}{i}}{\binom{m}{n}}$$

37/68

Approach 1

Overrepresentation analysis, Fisher's exact test

- *m* is the total number of genes
- *j* is the number of genes are in the functional category
- · *n* is the number of differentially expressed genes
- · *k* is the number of differentially expressed genes in the category

If rows or columns of the 2x2 contingency table are independent, Fisher's exact test is used

$$P = \sum_{i=k}^{n} \frac{\binom{n}{i} \binom{m}{j+k-i}}{\binom{m+n}{j+k}}$$

38/68

Approach 1

Overrepresentation analysis (ORA)

- 1. Find a set of differentially expressed genes (DEGs)
- 2. Are DEGs in a set more common than DEGs not in a set?
- Fisher test stats::fisher.test()
- Conditional hypergeometric test, to account for directed hierarchy of GO GOstats::hypergTest()

Example:

 $https://github.com/mdozmorov/MDmisc/blob/master/R/gene_enrichment.R$

Approach 1

Problems with Fisher's exact test

- The outcome of the overrepresentation test depends on the significance threshold used to declare genes differentially expressed.
- Functional categories in which many genes exhibit small changes may go undetected.
- Genes are not independent, so a key assumption of the Fisher's exact tests is violated.

39/68 40/

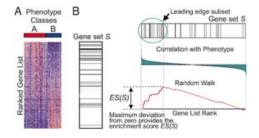
Many GO enrichment tools

- GOStat, http://gostat.wehi.edu.au/
- GOrilla, Gene Ontology enRIchment anaLysis and visuaLizAtion tool http://cbl-gorilla.cs.technion.ac.il/
- · g:Profiler, http://biit.cs.ut.ee/gprofiler/
- Metascape, http://metascape.org/
- · ToppGene, https://toppgene.cchmc.org/
- · WebGestals WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/
- R packages, clusterProfiler, https://www.bioconductor.org/packages/devel/bioc/html/clusterProfiler.html

Approach 2

Functional Class Scoring (FCS)

- Gene set analysis (GSA). Mootha et al., 2003; modified by Subramanian, et al.
 "Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles." PNAS 2005 http://www.pnas.org/content/102/43/15545.abstract
- Main rationale functionally related genes often display a coordinated expression to accomplish their roles in the cells
- Aims to identify gene sets with "subtle but coordinated" expression changes that would be missed by DEGs threshold selection


41/68 42/68

GSEA: Gene set enrichment analysis

- The null hypothesis is that the rank ordering of the genes in a given comparison is random with regard to the case-control assignment.
- The alternative hypothesis is that the rank ordering of genes sharing functional/pathway membership is associated with the case-control assignment.

GSEA: Gene set enrichment analysis

- 1. Sort genes by log fold change
- Calculate running sum increment when gene in a set, decrement when not
- 3. Maximum of the runnig sum is the enrichment score larger means genes in a set are toward top of the sorted list
- 4. Permute subject labels to calculate significance p-value

43/68 44/68

GSEA: Gene set enrichment analysis

- Compute a statistic (difference between 2 clinical groups) for each gene that measures the degree of differential expression between treatments.
- Create a list L of all genes ordered according to these statistics.
- Given a set of genes S we can see if these genes are non-randomly distributed in our list L
- If the experiment produced random results, we don't expect gene order to have biological coherence

45/68 46/68

GSEA: Gene set enrichment analysis

Enrichment Score

- Consider genes R_1, \ldots, R_N ordered by the difference metric
- Consider a gene set S of size G, containing functionally similar genes or pathway members.
- If R_i is not a member of S, define

$$X_{Ri} = -\sqrt{\frac{G}{N - G}}$$

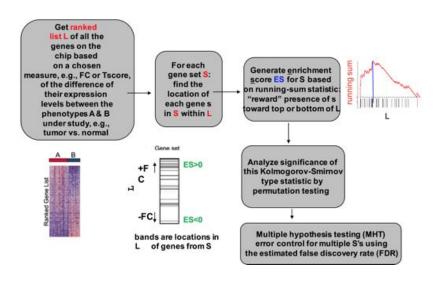
• If R_i is a member of S, define

$$X_{Ri} = \sqrt{\frac{N - G}{G}}$$

GSEA: Gene set enrichment analysis

- Calculate an enrichment score (ES) that reflects the degree to which a set S is overrepresented at the extremes (top or bottom) of the entire ranked list L.
- The score is calculated by walking down the list L and ...
 - Increase a running-sum statistic when we encounter a gene in S
 - Decrease it when we encounter genes not in S.
- The magnitude of the increment depends on the correlation of the gene with the phenotype.
- The final enrichment score is the maximum deviation from zero encountered in the random walk
 - Corresponds to a weighted Kolmogorov-Smirnov-like statistics

GSEA: Gene set enrichment analysis


Enrichment Score

Compute running sum across all N genes. The ES is defined as

$$\max_{1 \le j \le N} \sum_{i=1}^{j} X_{Ri}$$

- · or the maximum observed positive deviation of the running sum.
- ES is measured for every gene set considered. To determine whether any of the given gene sets shows association with the class phenotype distinction, permute the class labels 1,000 times, each time recording the maximum ES over all gene sets.

47/68 48/68

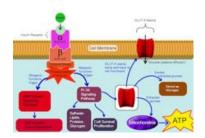
Other approaches

Linear model-based

- CAMERA (Wu and Smyth 2012)
- · Correlation-Adjusted MEan RAnk gene set test
- Estimating the variance inflation factor associated with inter-gene correlation, and incorporating this into parametric or rank-based test procedures

49/68 50/68

Other approaches


Linear model-based

- ROAST (Wu et.al. 2010)
- Under the null hypothesis (and assuming a linear model) the residuals are independent and identically distributed $N(0, \sigma_g^2)$.
- We can *rotate* the residual vector for each gene in a gene set, such that gene-gene expression correlations are preserved.

Other approaches

Impact analysis - incorporates topology of the pathway.

- · Gene's fold change
- Classical enrichment statistics
- The topology of the signaling pathway

51/68 52/68

Other approaches

 Pathway-Express, http://vortex.cs.wayne.edu/projects.htm#Pathway-Express

Sorin Draghici et al., "A Systems Biology Approach for Pathway Level Analysis," *Genome Research*. 2007. https://www.ncbi.nlm.nih.gov/pubmed/17785539

 SPIA: Signaling Pathway Impact Analysis, https://bioconductor.org/packages/release/bioc/html/SPIA.html

Adi Laurentiu Tarca et al., "A Novel Signaling Pathway Impact Analysis," *Bioinformatics*. 2009

Overview

- · Why enrichment analysis?
- What is enrichment analysis?
- Gene ontology and pathways
- · GENE ontology and pathways enrichment
- · GENOMIC REGIONS enrichment
- · Tools and references

53/68 54/68

Gene enrichment vs. genome enrichment

- Gene set enrichment analysis summarizing many genes of interest, such as differentially expressed genes, with a few common gene annotations (molecular functions, canonical pathways)
- Epigenomic enrichment analysis summarizing many genomic regions of interest, such as disease-associated genomic variants, with a few common genome annotations (chromatin states, transcription factor binding sites)

Genomic regions

- · Gene/exon boundaries, promoters
- · Single Nucleotide Polymorphisms (SNPs)
- · Transcription Factor Binding Sites (TFBS)
- Differentially methylated regions
- CpG islands

Each genomic region has coordinates (unique IDs):

Chromosome, Start, End

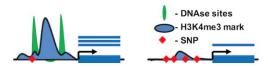
55/68 56/

Annotations of genomic regions

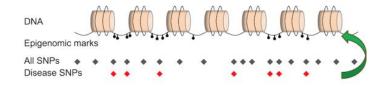
- Epigenomic (regulatory) regions genomic regions annotated as carrying functional and/or regulatory potential
- · DNasel hypersensitive sites
- Histone modification marks
- · Transcription Factor Binding Sites
- · DNA methylation
- Enhancers

• ...

Genome annotation consortia



57/68 58/68


Why "genomic region enrichment analysis"?

Enrichment = functional impact

- · Hypothesis: SNPs in epigenomic regions may disrupt regulation
- More significant enrichment = more SNPs in epigenomic regions = more regulation is disrupted (SNP burden)

Statistics of epigenomic enrichments

- 6 out of 7 disease-associated SNPs overlap with epigenomic marks
- How likely this to be observed by chance? (Chi-square test/Binomial test/Permutation test)

59/68 60/6

Overview

- · Why enrichment analysis?
- · What is enrichment analysis?
- Gene ontology and pathways
- · GENE ontology and pathways enrichment
- GENOMIC REGIONS enrichment
- · Tools and references

Gene set enrichment analysis

Web

- GSEA (https://www.broadinstitute.org/gsea/index.jsp) Better way of doing enrichment analysis
- g:Profiler (http://biit.cs.ut.ee/gprofiler/) gene ID converter, GO and pathway enrichment, and more
- ToppGene (https://toppgene.cchmc.org) Quick gene enrichment analysis in multiple categories
- Metascape (http://metascape.org/) Enrichment analysis of multiple gene sets
- DAVID (https://david.ncifcrf.gov/) Newly updated gene enrichment analysis
- FRY (http://shiny.bioinf.wehi.edu.au/giner.g/FRY_GeneSetExplorerApp/) Fast Interactive Biological Pathway Miner, from WEHI group

61/68 62/68

Gene set enrichment analysis

DIY

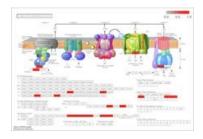
clusterProfiler

(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html)

- statistical analysis and visualization of functional profiles for genes and gene clusters

· limma

(https://bioconductor.org/packages/release/bioc/html/limma.html) - Linear Models for Microarray Data, includes functional enrichment functions goana, camera, roast, romer


GOstats

(https://www.bioconductor.org/packages/2.8/bioc/html/GOstats.html) - tools for manimpuating GO and pathway enrichment analyses.

https://github.com/mdozmorov/MDmisc/blob/master/R/gene enrichment.

Gene annotation databases

- annotables (https://github.com/stephenturner/annotables) R data package for annotating/converting Gene IDs
- msigdf (https://github.com/stephenturner/msigdf) Molecular Signatures Database (MSigDB) in a data frame
- pathview (https://www.bioconductor.org/packages/devel/bioc/html/pathview.html) a tool set for pathway based data integration and visualization

63/68 64/68

Genomic regions enrichment analysis

Genome Track Analyzer (AnCorr)
Genomic Association Tester (GAT)

Stereo Gene
ENCODE ChIP-Seq Significance Tool
EpiGraph INRICHFORGE fGWAS
LOLA EpiRegNet PodBat
Genomic HyperBrowser
Enrichr GoShifter BEDTools
The Genboree Epigenome Toolset
regioneR GREAT
GenomeRunner
BioMart Enrichment Tool
GenometriCorr
ChIPSeeker

Genomic regions enrichment analysis

- GREAT predicts functions of cis-regulatory regions, http://bejerano.stanford.edu/great/public/html/
- Enrichr, gene- and genomic regions enrichment analysis tool, http://amp.pharm.mssm.edu/Enrichr/#
- GenomeRunner, Functional interpretation of SNPs (any genomic regions) within regulatory/epigenomic context, http://integrativegenomics.org/

65/68 66/68

Learn more

- Dave's blog (http://davetang.org/muse/) search for "Gene ontology enrichment analysis"
- Nam D., and Seon-Young K.. "Gene-Set Approach for Expression Pattern Analysis." Briefings in Bioinformatics 2008 https://www.ncbi.nlm.nih.gov/pubmed/18202032
- Mutation Consequences and Pathway Analysis working group. "Pathway and Network Analysis of Cancer Genomes." Nature Methods 2015 https://www.ncbi.nlm.nih.gov/pubmed/26125594
- Khatri, P. et.al. "Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges." PLoS Computational Biology 2012 https://www.ncbi.nlm.nih.gov/pubmed/22383865
- de Leeuw, C. et.al. "The Statistical Properties of Gene-Set Analysis." Nature Reviews 2016 https://www.ncbi.nlm.nih.gov/pubmed/27070863

FINE

67/68 68/68