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Taxonomy of Microarray Data Analysis
Methods

Unsupervised Learning

- The statistical analysis seeks to find structure in the data without
knowledge of class labels.
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Taxonomy of Microarray Data Analysis
Methods

Supervised Learning

- Class or group labels are known a priori and the goal of the
statistical analysis pertains to identifying differentially expressed
genes (AKA feature selection) or identifying combinations of genes
that are predictive of class or group membership.
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Supervised Learning

- Class comparison/ Feature selection
- T-test/ Wilcoxon rank sum test
- F-test/ Kruskal-Wallis test
- Adjustment for multiple comparisons

- Class Prediction
- K nearest neighbors

Compound Covariate Predictors
- Classification trees

Support vector machines
- efc.
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Hypothesis testing

- The hypothesis that two means y; and p, are equal is called a null
hypothesis, commonly abbreviated H.

- This is typically written as Hy : u; = u»

- Its antithesis is the alternative hypothesis, Hy : p; # uo
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Hypothesis testing

- If the sample means calculated are identical, we would suspect the
null hypothesis is true.

- Even if the null hypothesis is true, we do not really expect the
sample means to be identically equal because of sampling
variability.

- We would feel comfortable concluding H, is true if the chance
difference in the sample means should not exceed a couple of
standard errors.
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Hypothesis testing

- A statistical test of hypothesis is a procedure for assessing the
compatibility of the data with the null hypothesis.

- The data are considered compatible with H if any discrepancy
from H, could readily be due to chance (i.e., sampling error).

- Data judged to be incompatible with Hj, are taken as evidence
in favor of H,.
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Hypothesis Testing

- Type | error: The probability of rejecting a null hypothesis when it is
true. (e.g., a gene is declared to be differentially expressed when it
is not.)

- Type Il error: The probability of accepting a null hypothesis when it
is false. (e.g., a gene is declared to not be differentially expressed
when it actually is.)

Truly differentially expressed?

Yes | No

Yes  True Positive

Statistically
significant?
True Negative

(TN)

Sensitivity Specificity
=TP/(TP+FN) | =TN/(FP+TN)
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P-value

- The p-value for a hypothesis test is the probability, computed under
the condition that the null hypothesis is true, of the test statistic
being at least as extreme as the value of the test statistic that was

Hypothesis testing

- The mean uy of a random variable X is a measure of central

location of the density of X.

- The variance of a random variable is a measure of spread or

actually obtained. dispersion of the density of X.

- Alarge p-value (close to 1) indicates a value of t near the

. X—p)’
center of the t-distribution. Var(X) = E[(X —p?1 =Y — 2+ =0?

(n=1)

- A small p-value indicates a value of t in the far tails of the t- - Standard deviation = y/Var(X) = ¢

distribution.
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Two-sample comparison Differential expression

Let us consider the simplest case: two-sample comparison. Our goal is
to find the list of genes that are differentially expressed. Suppose we
have:

- Many microarray experiments are carried out to find genes which
are differentially expressed between two (or more) samples.

- Initially, comparative microarray experiments were done with few, if
any, replicates, and statistical criteria were not used for identifying
differentially expressed genes. Instead, simple criteria were used
such as fold-change, with 2-fold being a popular cut-off.

- n; samples in group 1
- np samples in group 2

- For each gene, n; + n, expression levels are recorded for all the

samples - The simplest experiment involves comparing two samples on one
array with two-color technology or two arrays if using one-color
Determine which genes have differential expression between the two technology

groups of samples.
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DE by Average Fold-Change (M)

- Simple fold-change rules give no
assessment of statistical significance

- Need to construct test statistics
incorporating variability estimates
(from replicates).
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Two-sample comparison, T-test

In testing Hy : 41 = up against Hy : py # pp note that we could have

restated the null hypothesis as

Ho:py —pp=0and Hy :py —pp #0

- To carry out the t-test, the first step is to compute the test statistic
and then compare the result to a t-distribution with the appropriate

degrees of freedom (df)

- Satterthwaite’s formula:

df =

(s
Ly
n

2\2
n

2\2
1 S
(o) +

2
1 (=
n—1\ m
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Variability and gene expression

- Simplest method, fold change, does not take gene variability into account.
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Two-sample comparison, T-test

Let the mean and standard deviation expression levels for samples in two groups be

.—i n; . 2 _ 1 n; o T)
Xi = 2,’:1)@/' and s; = T jet (x5 — %7

The two-sample pooled t-statistice is given by
X2 — X1
S,,\/l/nl + 1/n,

where

2

(n; — 1)5% + (ny — l)s%
sp =

n1+n2—2

is the pooled estimate of the standard deviation.
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T-test assumptions

- Data must be independent random samples from their respective
populations

- Sample size should either be large or, in the case of small sample
sizes, the population distributions must be approximately normally
distributed.

- When assumptions are not met, non-parametric alternatives are
available (Wilcoxon Rank Sum/Mann-Whitney Test)
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When there are few replicates...

- Fold change using averages M can be driven by outliers
* T-statistics % can be driven by tiny variances

- Solution: "robust" version of t-statistic
- Replace mean by median

- Replace standard deviation by median absolute deviation
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Welch's t-test

Does not assume equal variances for each group

tWelCh _ ygl. - )’g2.
e = _° °"
S2) 83

ny ny

The variances 551 and ng,z are then estimated independently in both
groups for each gene
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T-test: Probe set 208680 _at

1 20137 1974.6
2 21419 2027.6
3 2040.2 1914.8
4 19733 1955.8
5 2162.2 1963
6 1994.8 2025.5
7 1913.3 1865.1
8 2068.7 1922.4
2038.5 1956.1
el 7051.284 3062.991

n 8 8
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T-test: Probe set 208680 _at

_ 0=y -0
[g = —
SE (i -y)
2038.5 — 1965.1) — 0
&= ( 7051.3 3062)66 =237
7051.3 + 3062.99)2
af = P13+ D 12116
7051.37 | 306299
81 8—1
- p=0.039
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F-test
SS(group)
_ between — group variability _ df(group)
& ™ within — group variability ~  SS(erron
df(error)
T G-y,
F, = =1

T Y 0V =T -y
T (=)
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F-test

In testing

Hy:pr =po =...=
against

Hy : The pu's are not all equal

we use an F-test.
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Non-parametric tests

- Non-normally distributed data

- More robust to outliers

- Less power

- Used when t-test assumptions cannot be met
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Non-parametric tests

- Mann-Whitney test (or Wilcoxon rank-sum test)
- differences in the sums of ranks between 2 populations

- even if the medians are the same, there can be a statistically
significant difference from the distribution of ranks

»
1
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Anova: Analysis of Variance

Common Designs and Tests

- One-way ANOVA is used to test for differences among two or more
independent groups (means). When there are only two means to
compare, the t-test and the ANOVA F-test are equivalent; the
relation between ANOVA and t is given by F = {2.

- Factorial ANOVA is used when the experimenter wants to study
the interaction effects among the treatments.

- Repeated measures ANOVA is used when the same subjects are
used for each treatment (e.g., in a longitudinal study).
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Anova: Analysis of Variance
Doing multiple two-sample t-tests would result in an increased chance

of committing a Type | error.

For this reason, ANOVAs are useful in comparing (testing) three or
more means (groups or variables) for statistical significance.

Classes of ANOVA models

1. Fixed-effects model: a statistical model that represents observed
quantities as non-random
2. Random-effects model: used when the treatments are not fixed

3. Mixed model: contains both fixed and random effects
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Limma

- Limma is an R package to find differentially expressed genes
- Your field guide to microarray data analysis

- It uses linear models fitted to normalized intensities (one-color) or
log-ratios (two-color)

- Assumption: normal distribution
- Output: p-values (adjusted for multiple testing)

http://bioinf.wehi.edu.au/limma/

https://bioconductor.org/packages/release/bioc/html/limma.html
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Limma

- design matrix
- defines which conditions arrays belong to
- rows: arrays; columns: coefficients

- contrast matrix

- specifies which comparisons you would like to make between
the RNA samples

- for very simple experiments, you may not need a contrast
matrix
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Limma

- Linear models
- can be used to compare two or more groups
- can be used for multifactorial designs
- e.g. genotype and treatment

- Uses empirical Bayes analysis to improve power in small sample
sizes

- Models gene-level error variances {612, ...,05} with a scaled
inverse y2

- borrowing information across genes

Moderated t-Statistics

- Limma, Moderated t-statistics, described in (Gordon K. Smyth,
"Linear Models and Empirical Bayes Methods for Assessing
Differential Expression in Microarray Experiments" Statistical
Applications in Genetics and Molecular Biology 3 (2004)
http://www.statsci.org/smyth/pubs/ebayes.pdf)

Yegl. — Yg2.
limma [ 1 1

where Si}""’"“ is the posterior variance.

limma _
f, ¢ =

30745
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Moderated t-Statistics

The posterior variance Si™ is a combination of an estimate obtained
from the prior distribution S3 and the pooled variance S?

doS} + d,S?
d0+dg

limma __
Sg

where d,, and d, are, respectively, prior and empirical degrees of
freedom

Including a prior distribution of variances has the effect of borrowing
information from all genes to aid with inference about individual
genes
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SAM procedure

Sample genes
expression

scale

Define and calculate
a statistic, d(i)
JL
Generate permutated — Estimate attributes
samples of d(i)’s distribution

1L

Identify potentially - Choose
Significant genes A

JL 0]
Estimate FDR |77~~~
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Significance analysis of microarrays (SAM)

- V. G. Tusher et.al. "Significance Analysis of Microarrays Applied to
the lonizing Radiation Response" PNAS 2001
http://www.pnas.org/content/98/9/5116.long

- A clever adaptation of the t-ratio to borrow information across genes

SAM seeks to control the proportion of false rejections among the
set of rejected hypotheses (FDR).

Permutation method is used to calculate the null distribution of the
modified t-statistics.
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SAM two-class unpaired

- For each gene, compute the d-value (similar to a t-statistic). This is the observed
d-value (d;) for that gene.

- Randomly shuffle the expression values between groups A and B. Compute the d-
value for each randomized set.

- Take the average of the randomized d-values for each gene. This is the ‘expected
relative difference’ (dg) of that gene. Difference between (d;) and (dg) is used to
measure significance.

- Plot d(,‘) VS. dE(i)

- Calculate FDR = average number of genes that exceed A in the permuted data.

Group A Group B

Expl Fxp2 Fxps Exp3 Expd Exp6

Gene 1 _ «— Original grouping

Group A l Group B

Exp3 Exp2 Exp6 ExpdExp3 Expl

Y e -« Randomized grouping
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SAM statistics

« Define a statistic, based on the ratio of change in gene
expression to standard deviation in the data for this gene.

d(l) _ f] (1) - fU (1) ﬁ Difference between the

. means of the two conditions
s(i)+s,

=l 9

Estimate of the standard
deviation of the numerator

Fudge Factor

Ly 1

s(i) = [“J{Z[xm(i) ~% O+ [x,()-%, (z‘)f}

n +n,—2
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Estimating significance

- We have calculated a new statistics and we don’t have a parametric
description of the null distribution

- Solution: generate an empirical null distribution form a set of
experiments where all hypotheses should be null

- Generate permutations of data labels so no difference is expected

- For each permutation p, calculate d,;.
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Why s, ("fudge" factor)?
- Prevents d; from becoming too large when the variance is close to
zero (which can lead to false positives)

- Choose one s for the entire dataset, to make the coefficient of
variation of d(;) approximately constant

- Typically, s, can be computed as the 90" percentile of the standard
errors of all genes
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Identifying Significant Genes

- Define a threshold A

- Find the smallest positive d; such that
|diy — depy| > A

- Callity
- In a similar manner, find the largest negative d;. Call it t,

- Foreach gene i, ifd; >t vV d; < b, call it potentially significant
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Identifying Significant Genes

- Rank the original d(i)’s: d1) > do) > d3) >. ..
- Plot d(i) VS. dE(,')

- For most of the genes, d;, ~ dg
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Estimate FDR example

d(i) d (i)

8.3 83| 84 |79] 81
1@ 32|44 (25|16

2.9 1.9 2.7 |1.7] 0.1
£,1€03 03|-06(1.0|-2.1
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Estimate FDR

- 11 and 1, will be used as cutoffs

- Calculate the average number of genes that exceed these values in
the permutations.

- Estimate the number of falsely significant genes, under Hy:

n.perm
1 -P

Z number{dp(i) >H Vv dp(,‘) <tnh}
=1

n.perm

- Divide by the number of genes called significant
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Estimate FDR from the reference distribution d

d(i) d (i)

8.3 83| 84 |79] 81
1@ 32|44 (25|16

2.9 1.9 2.7 |1.7] 0.1
£,|€0.5 03|-06/1.0[-2.1

a7
FDR = ? =0.5833

Delta A is the half-width of the bar around the 45-degree line
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Other applications of SAM

- More than two groups
- Paired data
- Survival data, with censored response
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