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K-means statistics

- The basic idea behind K-means clustering consists of defining
clusters so that the total intra-cluster variation (known as total
within-cluster variation) is minimized

k
minimize (Z W(Ck)>

i=1

where C; is the k™ cluster and W(Cy) is the within-cluster variation of
the cluster C;.
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K-means clustering

- k-means clustering is a method of cluster analysis which aims to
partition n observations into k clusters in which each observation
belongs to the cluster with the nearest mean.

- It is similar to the expectation-maximization algorithm for mixtures of
Gaussians in that they both attempt to find the centers of natural
clusters in the data.
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K-means - Algorithm

Begin
Assign each item a class in 1 to K (randomly)
For 1 to max-iteration {
For each class 1to K {
Calculate centroid (one of the “/K” means”)
Calculate distance from centroid to each item
Assign each item the class of the nearest centroid
Exit if no items are re-assigned (convergence)
End

J. B. MacQueen "Some Methods for classification and Analysis of Multivariate
Observations" 1967 https://projecteuclid.org/euclid.bsmsp/1200512992
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K-means steps

- Simplified example
— Expression for two genes for 14 samples

- Some structure can be seen

K-means steps

— Find the closest centroid for each point

- This is where distance is used
- This is "first partition" into K clusters
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K-means steps

- Choose K centroids
These are starting values that the user picks.

There are some data driven ways to do it
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K-means steps

— Take the middle of each cluster
- Re-compute centroids in relation to the middle

- Use the new centroids to calculate distance
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K-means steps

— Expression for two genes for 14 samples
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K-means limitations

- Final results depend on starting values

- How do we chose K? There are methods but not much theory
saying what is best.

- Where are the pretty pictures?
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PAM (K-medoids)

- Centroid - The average of the samples within a cluster
- Medoid - The “representative object” within a cluster

- Initializing requires choosing medoids at random.
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Self-organizing (Kohonen) maps

- Self organizing map (SOM) is a learning method which produces
low dimension data (e.g. 2D) from high dimension data (nD) through
the use of self-organizing neural networks

- E.g. an apple is different from a banana in more then two ways but
they can be differentiated based on their size and color only.
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Self-organizing (Kohonen) maps Self-organizing (Kohonen) maps

If we present apples and bananas with points and similarity with lines then - We just created a map to differentiate an apple from banana based on two traits
only.

- Two points connected by a shorter line are of same kind
P y - We have successfully “trained” the SOM, now anyone can use to “map” apples

- Two points connected by a longer line are of different kind from banana and vice versa

©

- Threshold ¢ is chosen to decide if the line is longer/shorter
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SOM in gene expression studies SOM example
1. Specify the number of nodes (clusters) desired, and also 2. Choose a random gene, say, G9
specify a 2-D geometry for the nodes, e.g., rectangular or 3. Move the nodes in the direction of G9. The node closest to G9
hexagonal (N2) is moved the most, and the other nodes are moved by
@ N = Nodes smaller varying amounts. The farther away the node is from N2,
@@ () @ G =Genes the less it is moved.
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SOM example

4. Repeat Steps 2 and 3 several thousand times; with each iteration, the
amount that the nodes are allowed to move is decreased.

5. Finally, each node will “nestle” among a cluster of genes, and a
gene will be considered to be in the cluster if its distance to the
node in that cluster is less than its distance to any other node.
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Other approaches

- Bi-clustering - cluster both the genes and the experiments simultaneously to find
appropriate context for clustering

- R packages: iBBiG, FABIA, biclust
- stand-alone: BicAT (Biclustering Analysis Toolbox))
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Application of SOM

Genome Clustering

+ Goal: trying to understand the phylogenetic relationship between different
genomes.

- Compute: bootstrap support of individual genomes for different phylogentic tree
topologies, then cluster based on the topology support.

Clustering Proteins based on the architecture of their activation loops

- Align the proteins under investigation

- Extract the functional centers

+ Turn 3D representation into 1D feature vectors
+ Cluster based on the feature vectors
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Dimensionality reduction
techniques



Principal Components Analysis

- Principal component analysis (PCA) is a mathematical procedure
that transforms a number of possibly correlated variables into a
smaller number of uncorrelated variables called principal
components

- Also know as Independent component analysis or dimension
reduction technique

- PCA decomposes complex data relationship into simple
components

- New components are linear combinations of the original data
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Principal Components Analysis

- PCA - linear projection of the data onto major principal components
defined by the eigenvectors of the covariance matrix.

- Criterion to be minimised: square of the distance between the
original and projected data.

xp = Px

P is composed by eigenvectors of the covariance matrix

1
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Principal Components Analysis

- Performs a rotation of the data that maximizes the variance in the

new axes

- Projects high dimensional data into a low dimensional sub-space

(visualized in 2-3 dims)

- Often captures much of the total data variation in a few dimensions

(<9)

- Exact solutions require a fully determined system (matrix with full

rank), i.e. a “square” matrix with independent rows
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Principal Components Analysis
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1. Principal Component

Example: Leukemia data sets by Golub et al.: Classification of ALL and AML
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Principal Components Analysis

- Eigenvalue: describes the total variance in an eigenvector.

- The eigenvector with the largest eigenvalue is the first principal

component. The second largest eigenvalue will be the direction of
the second largest variance.
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PCA for gene expression
- Given a gene-by-sample matrix X we decompose (centered and
scaled) X as USVT

- We don’t usually care about total expression level and the dynamic
range which may be dependent on technical factors

- U, V are orthonormal

- S diagonal-elements are eigenvalues = variance explained
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Principal Components Analysis

Looking at 2 genes. .. PC1 = 0.83*GATA3 + 0.56*XBP1
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PCA for gene expression

- Columns of V are
- Principle components

- Eigengenes/metagenes that span the space of the gene
transcriptional responses

- Columns of U are

- The “loadings”, or the correlation between the column and the
component

- Eigenarrays/metaarrays - span the space of the gene
transcriptional responses

- Truncating U, V, D to the first k dimensions gives the best k-rank

approximation of X
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Singular Value Decomposition PCA applied to cell cycle data
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Other decomposition techniques NMF
- Non-negative matrix factorization - Many computational methods

- A= WH (A, W, H are non-negative)

- Cost function |[A — WH|
- H defined a meta-gene space: similar to eigengenes

e . - Squared error - aka Frobenius norm
- Classification can be done in the meta-gene space

A woH - Kullback—Leibler divergence
(rank M) = (rank k=2)
Motos e M - Optimization procedure

- — = W NI 1 'l'(wm . « g . . il

iE "-T " - Most use stochastic initialization, and the results don’t always

converge to the same answer

N features (genes)

N
1l
metagene expression pofie

—— A
Class1  Class 2

Jean-Philippe Brunet et al. PNAS 2004;101:4164-4169
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NMF NMF

- A = WH : Toy Biological interpretation - NMF operates in the original non-negative measurement space

- Assume k=2 - Highly expressed genes matter more

- We have 2 transcription factors that activate gene signatures W1 - Positivity constraint is advantageous: positive correlation among
and W2 genes is more likely to be biologically meaningful

- H represents the activity of each factor in each sample - NMF may more accurately capture the data generating process

- TF effects are additive
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NMF vs. PCA Multidimensional scaling

MDS attempts to

Identify abstract variables which have generated the inter-object
similarity measures

Reduce the dimension of the data in a non-linear fashion

L | - Reproduce non-linear higher-dimensional structures on a lower-
dimensional display

- Results of PCA vs NMF for reducing the leukemia data with 72 samples in
visualization. Sample 66 is mislabeled. However in 2-D display, the reduced data
by NMF can clearly show this mistake while that by PCA cannot demonstrate the
wrong. ‘PC’ stands for principal component and ‘BE’ means basis experiment.

Weixiang Liu, Kehong Yuan, Datian Ye “Reducing microarray data via nonnegative

matrix factorization for visualization and clustering analysis” Journal of Biomedical
Informatic 2008,
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Kruskal's stress MDS Basic Algorithm

2 - Obtain and order the M pairs of similarities
stress = 42 (d'/ dl])
Yd; - Try a configuration in ¢ dimensions

) . - Determine inter-item distances and reference numbers
- Goodness-of-fit - Measures degree of correspondence between distances among

points on the MDS map and the matrix input. - Minimize Kruskal's stress
- Start with distances d;; - Move the points around to obtain an improved configuration

. . . A
Fit decreasing numbers d;; - Repeat until minimum stress is obtained
- Subtract, square, sum

- Take a square root
- Divide by a scaling factor
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Comparison Between PCA, MDS, and SOM

- PCA tries to preserve the covariance of the original data

- MDS ftries to preserve the metric (ordering relations) of the original
space

- SOM tries to preserve the topology (local neighborhood relations),
items projected to nearby locations are similar
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