Bioconductor overview

Mikhail Dozmorov Fall 2016

Bioconductor packages

- · Bioconductor software consists of R add-on packages.
- An R package is a structured collection of code (R, C, or other), documentation, and/or data for performing specific types of analyses.
- E.g. **affy**, **limma**, **sva** packages provide implementations of specialized statistical and graphical methods.

Bioconductor Project

· The Bioconductor project started in 2001

Goal: make it easier to conduct reproducible consistent analysis of data from new high-throughput biological technologies

- Core maintainers of the Bioconductor website located at Fred Hutchinson Cancer Research Center
- Updated version released biannually coinciding with the release of R
- Many contributed software packages

2/15

Goals of the Bioconductor Project

- Provide access to statistical and graphical tools for analysis of highdimensional biological data
- 1. Microarray analysis
- 2. High-throughput 'omics' data

3/15 4/15

Goals of the Bioconductor Project

- Include comprehensive documentation describing and providing examples for packages
- Packages have associated vignettes that provide examples of how to use functions
- Have additional tools to work with publically available databases and other meta-data

Vignettes

- Bioconductor has adopted a new documentation paradigm, the vignette.
- A vignette is an executable document consisting of a collection of documentation text and code chunks.
- Vignettes form dynamic, integrated, and reproducible statistical documents that can be automatically updated if either data or analyses are changed.
- Vignettes can be generated using the sweave function (or, roxygen2 package)

5/15 6/15

Microarray data analysis

Microarray data analysis

7/15 8/15

Bioconductor website

Lets take a look at the website...

http://bioconductor.org/

marrayRaw class

Pre-normalization intensity data for a batch of arrays

9/15 10/15

AffyBatch class

Probe-level intensity data for a batch of arrays (same CDF)

ExpressionSet class

Processed Affymetrix or spotted array data

11/15 12/15

MIAME

Minimum Information About a Microarray Experiment (MIAME) http://fged.org/projects/miame/

The six most critical elements contributing towards MIAME are:

- 1 The raw data for each hybridization (e.g., CEL or GPR files)
- 2 The final processed (normalized) data for the set of hybridizations in the experiment (study) (e.g., the gene expression data matrix used to draw the conclusions from the study)
- 3 The essential sample annotation including experimental factors and their values (e.g., compound and dose in a dose response experiment)

13/15

Pre-processing packages

- 1. marray: Spotted DNA microarrays.
- 2. affy: Affymetrix oligonucleotide chips.
- 3. limma: all, from spotted arrays to Affy to RNA-seq
- Reading in intensity data, diagnostic plots, normalization, computation of expression measures.
- The packages start with very different data structures, but produce similar objects of class ExpressionSet.
- One can then use other Bioconductor and CRAN packages for exploratory data analysis and visualization, differential expression detection

MIAME

Minimum Information About a Microarray Experiment (MIAME) http://fged.org/projects/miame/

- 4 The experimental design including sample data relationships (e.g., which raw data file relates to which sample, which hybridizations are technical, which are biological replicates)
- 5 Sufficient annotation of the array (e.g., gene identifiers, genomic coordinates, probe oligonucleotide sequences or reference commercial array catalog number)
- 6 The essential laboratory and data processing protocols (e.g., what normalization method has been used to obtain the final processed data)