
BioConductor Overviewr
2016-09-28

Contents
Installing Bioconductor 1

Bioconductor basics 1

ExressionSet 2
assayData (gene expression) . 2
phenoData (sample annotations) . 3
Annotation (featureData, annotation) . 5
experimentData . 6

SummarizedExperiment 7

Diagnostics 9

Software developed by the BioConductor project http://www.bioconductor.org is provided in the form of
R packages. For each package, a vignette illustrating its usage is provided. There are three main package
types, software, annotation data, and experimental data (see http://www.bioconductor.org/packages/release/
BiocViews.html).

Annotation data are packages that can be used to map mappings from probe identifiers used by the
manufacturer to gene-related information, such as Entrez Gene ID, chromosome on which the gene is located,
genomic coordinates of the gene, gene symbol, etc.

Installing Bioconductor

Running the biocLite.R script will install a subset of the most frequently used Bioconductor packages. From
the R prompt,
source("http://www.bioconductor.org/biocLite.R")
biocLite()

To install additional Bioconductor packages, use biocLite("package_name"). Instead of sourc-
ing biocLite.R all the time, install BiocInstaller package, load it in your .Rprofile file using
library(BiocInstaller), and have biocLite() always available.

Bioconductor basics

Once the base Bioconductor packages have been installed, you can access the vignettes for a specific package
as follows:
library("Biobase")
openVignette()

Please select a vignette:

1: Biobase - An introduction to Biobase and ExpressionSets

1

http://www.bioconductor.org
http://www.bioconductor.org/packages/release/BiocViews.html
http://www.bioconductor.org/packages/release/BiocViews.html

2: Biobase - esApply Introduction
3: Biobase - Notes for eSet developers

Press “1” to read the first one - it is the foundation of genomics data formats used in R. Or, press “0” to quit.

ExressionSet

Recall that objects in R can be either a vector, factor, matrix, array, data.frame, list, or ts. The
Biobase package of the Bioconductor project is fundamental, and established new objects that can be used to
store gene expression data. An ExpressionSet is an object that is a wrapper for the following associated
with a microarray study:

• assayData - Consists of expression data from a microarray experiment (the expression part hints at
the methods used to access it, as we will see below);

• phenoData - ‘meta-data’ describing samples in the experiment;
• featureData - annotations and meta-data about the features on the chip or technology used for the

experiment;
• protocolData - information related to the protocol used for processing each sample (and usually

extracted from manufacturer files); and
• experimentData - a flexible structure to describe the experiment.

Let’s look at one ExpressionSet object:
`?`(ExpressionSet)
data("sample.ExpressionSet")
sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples

element names: exprs, se.exprs
protocolData: none
phenoData

sampleNames: A B ... Z (26 total)
varLabels: sex type score
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2

For adventurous, let’s peek under the hood to see the slots of the ExpressionSet object. Access them as
sample.ExpressionSet@experimentData

assayData (gene expression)

First, the most important part of the high-throughput genomic experiment is the matrix of expression values.
The underlying structure of an expression matrix in Bioconductor is that the probes (i.e., genes) are in
rows while the samples are in columns. Let’s read in an example expression matrix and then store it as an
ExpressionSet. Once created, exprs is the extractor function that is used to access the expression values.

Let’s read in a gene expression matrix.
expression <- read.csv("data/genedata.csv")

dim(expression)

2

[1] 1505 36
class(expression)

[1] "data.frame"
names(expression)[1:4]

[1] "D.345.Cirrhosis" "D.334.Cirrhosis" "D.520.Cirrhosis" "D.451.Cirrhosis"
head(expression)[1:3]

D.345.Cirrhosis D.334.Cirrhosis D.520.Cirrhosis
AATK_E63_R_01 0.88449182 0.92280276 0.88430897
AATK_P519_R_01 0.75047686 0.73598163 0.71758445
AATK_P709_R_01 0.85082316 0.89804059 0.84933914
ABCA1_E120_R_01 0.95319422 0.91306182 0.94553088
ABCA1_P45_F_01 0.04818880 0.03573306 0.07866697
ABCB4_E429_F_01 0.03291049 0.03847083 0.03623496
rownames(expression)[1:4]

[1] "AATK_E63_R_01" "AATK_P519_R_01" "AATK_P709_R_01" "ABCA1_E120_R_01"

Having just expression values, we can construct minimal expression set.
minimalSet <- ExpressionSet(assayData = as.matrix(expression))
minimalSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1505 features, 36 samples

element names: exprs
protocolData: none
phenoData: none
featureData: none
experimentData: use 'experimentData(object)'
Annotation:
exprs(minimalSet)[1:5, 1:2]

D.345.Cirrhosis D.334.Cirrhosis
AATK_E63_R_01 0.8844918 0.92280276
AATK_P519_R_01 0.7504769 0.73598163
AATK_P709_R_01 0.8508232 0.89804059
ABCA1_E120_R_01 0.9531942 0.91306182
ABCA1_P45_F_01 0.0481888 0.03573306
featureNames(minimalSet)[1:4]

[1] "AATK_E63_R_01" "AATK_P519_R_01" "AATK_P709_R_01" "ABCA1_E120_R_01"

phenoData (sample annotations)

Phenotypic data provides information about the samples, such as normal/abnormal, age, gender, etc. The
phenotypic data is represented such that samples appear in rows while the variables appear in columns.
Notice that when including phenotypic data in an ExpressionSet, the row.names in the phenoData must
match the sample names in the expression matrix.

3

characteristics <- read.csv("data/phenodata.csv", row.names = 1)
summary(characteristics)

Gender Diagnosis
Length:36 Length:36
Class :character Class :character
Mode :character Mode :character

all.equal(rownames(characteristics), names(expression))

[1] TRUE

You will get a warning if there is a mismatch. Before including the phenoData into the ExpressionSet, we
may add some documentation describing information about each covariate (what does the variable name
represent, what units the covariates are measure in, etc). This is done by creating a metadata table.
metadata <- data.frame(labelDescription = c("Patient gender (Male or Female)",

"Tissue type (cirrhotic or cirrhotic without HCC)"), row.names = c("Gender",
"Diagnosis"))

metadata

labelDescription
Gender Patient gender (Male or Female)
Diagnosis Tissue type (cirrhotic or cirrhotic without HCC)
phenoChar <- new("AnnotatedDataFrame", data = characteristics, varMetadata = metadata)
phenoChar

An object of class 'AnnotatedDataFrame'
rowNames: D.345.Cirrhosis D.334.Cirrhosis ...

D.132.Cirrhosis.non.HCC (36 total)
varLabels: Gender Diagnosis
varMetadata: labelDescription

pData(phenoChar)[1:5,]

Gender Diagnosis
D.345.Cirrhosis Male Cirrhosis
D.334.Cirrhosis Male Cirrhosis
D.520.Cirrhosis Female Cirrhosis
D.451.Cirrhosis Male Cirrhosis
D.473.Cirrhosis Male Cirrhosis
pData(phenoChar)$Gender[1:5]

[1] "Male" "Male" "Female" "Male" "Male"

Once a phenoData set is created, it can be accessed using the pData accessor function. Adding phenoData
to samples from your ExpressionSet but ensure the phenotypic characteristics stored with it are properly
aligned.
anotherSet <- ExpressionSet(assayData = as.matrix(expression), phenoData = phenoChar)
anotherSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1505 features, 36 samples

element names: exprs
protocolData: none
phenoData

4

sampleNames: D.345.Cirrhosis D.334.Cirrhosis ...
D.132.Cirrhosis.non.HCC (36 total)

varLabels: Gender Diagnosis
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation:
males <- anotherSet[, pData(anotherSet)$Gender == "Male"]
pData(males)$Gender

[1] "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male"
[11] "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male"
[21] "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male" "Male"

The following code shows what happens when the phenotypic and expres- sion data do not include matching
sample names (output suppressed).
phony.pheno <- characteristics
rownames(phony.pheno)[1] <- "wrong.sample.name"
phenoPhony <- new("AnnotatedDataFrame", data = phony.pheno, varMetadata = metadata)
phony.pheno[1:3,]
pData(phenoPhony)[1:3,]
errorSet <- ExpressionSet(assayData = as.matrix(expression), phenoData = phenoPhony)

Annotation (featureData, annotation)

After an analysis, one is usually left with cryptic manufacturer labels of the probes that were significant in
your data analysis. To provide meaning to these probes, annotations represent meta data about the probes.
The annotation package provides some basic tools for annotation packages.
library(annotate)
library("GGHumanMethCancerPanelv1.db")
withannoSet <- ExpressionSet(assayData = as.matrix(expression), phenoData = phenoChar,

annotation = "GGHumanMethCancerPanelv1.db")
withannoSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1505 features, 36 samples

element names: exprs
protocolData: none
phenoData

sampleNames: D.345.Cirrhosis D.334.Cirrhosis ...
D.132.Cirrhosis.non.HCC (36 total)

varLabels: Gender Diagnosis
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation: GGHumanMethCancerPanelv1.db
featureNames(withannoSet) <- gsub("_01", "", featureNames(withannoSet))
symbol <- getSYMBOL(featureNames(withannoSet), annotation(withannoSet))
entrez <- getEG(featureNames(withannoSet), annotation(withannoSet))
entrez[1:10]

AATK_E63_R AATK_P519_R AATK_P709_R ABCA1_E120_R ABCA1_P45_F

5

NA NA NA "19" "19"
ABCB4_E429_F ABCB4_P51_F ABCB4_P892_F ABCC2_E16_R ABCC2_P88_F

"5244" "5244" "5244" "1244" "1244"
CpG <- mget(featureNames(withannoSet), env = GGHumanMethCancerPanelv1ISCPGISLAND)
CpG[1:5]

$AATK_E63_R
[1] 0

$AATK_P519_R
[1] 1

$AATK_P709_R
[1] 1

$ABCA1_E120_R
[1] 1

$ABCA1_P45_F
[1] 1

experimentData

Data about the experiment can be stored in the experimentData slot.
experimentData <- new("MIAME", name = "The Author", lab = "Biostat lab", contact = "theauthor@vcu.edu",

title = "Liver tissue study of cirrhosis vs non-HCC cirrhosis", abstract = "Compare values between two liver tissue type",
url = "www.vcu.edu", pubMedIds = "PMC124", other = list(notes = "Further information"))

experimentData

Experiment data
Experimenter name: The Author
Laboratory: Biostat lab
Contact information: theauthor@vcu.edu
Title: Liver tissue study of cirrhosis vs non-HCC cirrhosis
URL: www.vcu.edu
PMIDs: PMC124

Abstract: A 7 word abstract is available. Use 'abstract' method.
notes:
notes:

Further information
abstract(experimentData)

[1] "Compare values between two liver tissue type"
notes(experimentData)

$notes
[1] "Further information"

6

Putting it all together

withexpSet <- ExpressionSet(assayData = as.matrix(expression), phenoData = phenoChar,
annotation = "GGHumanMethCancerPanelv1.db", experimentData = experimentData)

withexpSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1505 features, 36 samples

element names: exprs
protocolData: none
phenoData

sampleNames: D.345.Cirrhosis D.334.Cirrhosis ...
D.132.Cirrhosis.non.HCC (36 total)

varLabels: Gender Diagnosis
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'

pubMedIds: PMC124
Annotation: GGHumanMethCancerPanelv1.db
experimentData(withexpSet)

Experiment data
Experimenter name: The Author
Laboratory: Biostat lab
Contact information: theauthor@vcu.edu
Title: Liver tissue study of cirrhosis vs non-HCC cirrhosis
URL: www.vcu.edu
PMIDs: PMC124

Abstract: A 7 word abstract is available. Use 'abstract' method.
notes:
notes:

Further information
abstract(experimentData(withexpSet))

[1] "Compare values between two liver tissue type"

SummarizedExperiment

The next generation of an object that can hold annotated ‘omics’ data is SummarizedExperiment. It is not
limited to genes, but instead holds information about genomic regions of interest.
library(SummarizedExperiment)
`?`(SummarizedExperiment)

We’ll look at an example of the SummarizedExperiment object in the parathyroidSE SummarizedExperiment
library. The loaded data is a SummarizedExperiment, which summarizes counts of RNA sequencing reads in
genes for an experiment on human cell culture. The SummarizedExperiment object has 63,000 rows, which
are genes, and 27 columns, which are samples, and the matrix, in this case, is called counts. And we have the
row names, which are ensemble genes, and metadata about the row data, and metadata about the column
data.

7

SummarizedExperiment
library(parathyroidSE)
RNA sequencing reads
data(parathyroidGenesSE)
se <- parathyroidGenesSE
se

class: RangedSummarizedExperiment
dim: 63193 27
metadata(1): MIAME
assays(1): counts
rownames(63193): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
rowData names(0):
colnames: NULL
colData names(8): run experiment ... study sample

assay function can be used get access to the counts of RNA sequencing reads. colData function , the column
data, is equivalent to the pData on the ExpressionSet. Each row in this data frame corresponds to a column
in the SummarizedExperiment. We can see that there are indeed 27 rows here, which give information about
the columns. Each sample in this case is treated with two treatments or control and we can see the number
of replicates for each, using the as.numeric function again.
Dimension of the SummarizedExperiment
dim(se)

[1] 63193 27
Get access to the counts of RNA sequencing reads, using assay function.
assay(se)[1:3, 1:3]

[,1] [,2] [,3]
ENSG00000000003 792 1064 444
ENSG00000000005 4 1 2
ENSG00000000419 294 282 164
Dimensions of this assay is a matrix, which has the same dimensions as the
SummarizedExperiment.
dim(assay(se))

[1] 63193 27
Get information about samples
colData(se)[1:3, 1:6]

DataFrame with 3 rows and 6 columns
run experiment patient treatment time submission

<character> <factor> <factor> <factor> <factor> <factor>
1 SRR479052 SRX140503 1 Control 24h SRA051611
2 SRR479053 SRX140504 1 Control 48h SRA051611
3 SRR479054 SRX140505 1 DPN 24h SRA051611
dimension of column data
dim(colData(se))

[1] 27 8
characteristics of the samples
names(colData(se))

[1] "run" "experiment" "patient" "treatment" "time"

8

[6] "submission" "study" "sample"
Get access to treatment column of sample characteristics
colData(se)$treatment

[1] Control Control DPN DPN OHT OHT Control Control
[9] DPN DPN DPN OHT OHT OHT Control Control

[17] DPN DPN OHT OHT Control DPN DPN DPN
[25] OHT OHT OHT
Levels: Control DPN OHT

See https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.
html for the full description.

Diagnostics

diagnostics <- devtools::session_info()
platform <- data.frame(diagnostics$platform %>% unlist, stringsAsFactors = FALSE)
colnames(platform) <- c("description")
pander(platform)

description
version R version 3.3.1 (2016-06-21)
system x86_64, darwin15.5.0

ui unknown
language (EN)

collate en_US.UTF-8
tz America/New_York

date 2016-09-28

packages <- as.data.frame(diagnostics$packages)
pander(packages[packages$`*` == "*",])

package * version date source
1 annotate * 1.50.0 2016-07-31 Bioconductor
2 AnnotationDbi * 1.34.4 2016-07-31 Bioconductor
5 Biobase * 2.32.0 2016-08-11 Bioconductor
6 BiocGenerics * 0.18.0 2016-07-31 Bioconductor

10 dplyr * 0.5.0 2016-06-24 CRAN (R 3.3.1)
13 GenomeInfoDb * 1.8.7 2016-09-05 Bioconductor
14 GenomicRanges * 1.24.3 2016-09-12 Bioconductor
15 GGHumanMethCancerPanelv1.db * 1.4.1 2016-08-19 Bioconductor
17 IRanges * 2.6.1 2016-07-31 Bioconductor
18 knitr * 1.14 2016-08-13 CRAN (R 3.3.1)
21 org.Hs.eg.db * 3.3.0 2016-07-31 Bioconductor
22 pander * 0.6.0 2015-11-23 CRAN (R 3.3.1)
23 parathyroidSE * 1.10.0 2016-09-25 Bioconductor
28 S4Vectors * 0.10.3 2016-08-19 Bioconductor
31 SummarizedExperiment * 1.2.3 2016-07-31 Bioconductor
34 XML * 3.98-1.4 2016-03-01 CRAN (R 3.3.1)

9

https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html

	Installing Bioconductor
	Bioconductor basics
	ExressionSet
	assayData (gene expression)
	phenoData (sample annotations)
	Annotation (featureData, annotation)
	experimentData

	SummarizedExperiment
	Diagnostics

