Clustering QC

Mikhail Dozmorov Fall 2017

Assess cluster fit and stability

- · Most often ignored.
- · Cluster structure is treated as reliable and precise
- BUT! Clustering is generally VERY sensitive to noise and to outliers
- · Measure cluster quality based on how "tight" the clusters are.
- Do genes in a cluster appear more similar to each other than genes in other clusters?

Clustering evaluation methods

- · Sum of squares
- · Homogeneity and Separation
- Cluster Silhouettes and Silhouette coefficient: how similar genes within a cluster are to genes in other clusters
- · Rand index
- Gap statistics
- · Cross-validation

3/23

Sum of squares

 A good clustering yields clusters where genes have small withincluster sum-of-squares (and high between-cluster sum-of-squares).

Homogeneity

 Homogeneity is calculated as the average distance between each gene expression profile and the center of the cluster it belongs to

$$H_k = \frac{1}{N_g} \sum_{i \in k} d(X_i, C(X_i))$$

 $N_{\rm \it g}$ - total number of genes in the cluster

5/23

Separation

 Separation is calculated as the weighted average distance between cluster centers

$$S_{ave} = \frac{1}{\sum_{k \neq l} N_k N_l} \sum_{k \neq l} N_k N_l d(C_k, C_l)$$

Homogeneity and Separation

- Homogeneity reflects the compactness of the clusters while Separation reflects the overall distance between clusters
- Decreasing Homogeneity or increasing Separation suggest an improvement in the clustering results

7/23

Variance Ratio Criterion (VCR)

$$VRC_k = (SS_B/(K-1))/(SS_W/(N-K))$$

- · SS_B between-cluster variation
- SS_W within-cluster variation

The goal is to maximize VRC_k over the clusters

$$\kappa_k = (VRC_{k+1} - VRC_k) - (VRC_k - VRC_{k-1})$$

- Select K to minimize the value of $kappa_k$
- Calinski & Harabasz (1974)
 http://www.tandfonline.com/doi/abs/10.1080/03610927408827101

Silhouette

 Good clusters are those where the genes are close to each other compared to their next closest cluster.

$$s(i) = \frac{b(i) - a(i)}{max(a(i), b(i))}$$

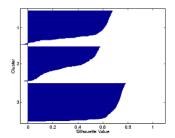
- $b(i) = min(AVGD_{BETWEEN}(i, k))$
- $a(i) = AVGD_{WITHIN}(i)$
- How well observation i matches the cluster assignment. Ranges -1 < s(i) < 1
- · Overall silhouette: $SC = \frac{1}{N_g} \sum_{i=1}^{N_g} s(i)$
- Rousseeuw, Peter J. "Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis." Journal of Computational and Applied Mathematics 1987

http://www.sciencedirect.com/science/article/pii/0377042787901257

9/23

Silhouette plot

- The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters.
- Silhouette width near +1 indicates points that are very distant from neighboring clusters
- Silhouette width near 0 indicate points that are not distinctly in one cluster or another
- Negative width indicates points are probably assigned to the wrong cluster.



Rand index

Cluster multiple times

· Clustering A: 1, 2, 2, 1, 1

· Clustering B: 2, 1, 2, 1, 1

Compare pairs

 $\cdot a := and =$, the number of pairs assigned to the same cluster in A and in B

• $b: \neq and \neq \dots$ different clusters in A and in B

• $c: \neq and =$, ... same in A, different in B

• $d := and \neq$, ... same in B, different in A

11/23

Rand index

$$R = \frac{a+b}{a+b+c+d}$$

- Adjust the Rand index to make it vary between -1 and 1 (negative if less than expected)
- AdjRand = (Rand expect(Rand))/(max(Rand) expect(Rand))

Rand index

$$RI = (a+b) / \binom{N}{2}$$

where a is the number of pairs that belong to the same true subtype and are clustered together, b is the number of pairs that belong to different true subtypes and are not clustered together, and N is the number of possible pairs that can be formed from the N samples.

Intuitively, *RI* is the fraction of pairs that are grouped in the same way (either together or not) in the two partitions compared (e.g. 0.9 means 90% of pairs are grouped in the same way).

13/23

Rand index

The Adjusted Rand Index (ARI) is the corrected-for-chance version of the Rand Index. The ARI takes values from -1 to 1, with the ARI expected to be 0 for a random subtyping.

 Rand index and adjusted Rand index, https://davetang.org/muse/2017/09/21/the-rand-index/, https://davetang.org/muse/2017/09/21/adjusted-rand-index/

Gap statistics

- Cluster the observed data, varying the total number of clusters k = 1, 2, ... K
- For each cluster, calculate the sum of the pairwise distances for all points

$$D_r = \sum_{i,i' \in C_r} d_{ii'}$$

Calculate within-cluster dispersion measures

$$W_k = \sum_{r=1}^k \frac{1}{2n_r} D_r$$

15/23

Gap statistics

- 1. Cluster the observed data, varying the total number of clusters from k = 1, 2, ..., K, giving within dispersion measures $W_k, k = 1, 2, ..., K$.
- 2. Generate B reference datasets, using the uniform prescription (a) or (b) above, and cluster each one giving within dispersion measures W_{kb}^* , b = 1, 2, ..., B, k = 1, 2, ..., K. Compute the (estimated) Gap statistic:

$$\operatorname{Gap}(k) = (1/B) \sum_{b} \log(W_{kb}^*) - \log(W_k)$$

3. Let $\bar{l} = (1/B) \sum_b \log(W_{kb}^*)$, compute the standard deviation $\mathrm{sd}_k = [(1/B) \sum_b (\log(W_{kb}^*) - \bar{l})^2]^{1/2}$, and define $s_k = \mathrm{sd}_k \sqrt{1 + 1/B}$. Finally choose the number of clusters via

$$\hat{k} = \text{smallest } k \text{ such that } \operatorname{Gap}(k) \ge \operatorname{Gap}(k+1) - s_{k+1}$$

Cross-validation approaches

- · Cluster while leave-out *k* experiments (or genes)
- Measure how well cluster groups are preserved in left out experiment(s)
- Or, measure agreement between test and training set

17/23

Clustering validity

 Hypothesis: if the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector

Suppose that the original data $\{X_i\}$ have been modeled using a cluster method to produce a dendrogram $\{T_i\}$; that is, a simplified model in which data that are "close" have been grouped into a hierarchical tree. Define the following distance measures.

- $x(i, j) = |X_i X_i|$, the ordinary Euclidean distance between the *i*th and *j*th observations.
- t(i, j) = the dendrogrammatic distance between the model points T_i and T_j . This distance is the height of the node at which these two points are first joined together.

Then, letting \bar{x} be the average of the x(i, j), and letting \bar{t} be the average of the t(i, j), the cophenetic correlation coefficient c is given by [4]

$$c = \frac{\sum_{i < j} (x(i,j) - \bar{x})(t(i,j) - \bar{t})}{\sqrt{[\sum_{i < j} (x(i,j) - \bar{x})^2][\sum_{i < j} (t(i,j) - \bar{t})^2]}}.$$

WADP - robustness of clustering

- If the input data deviate slightly from their current value, will we get the same clustering?
- Important in Microarray expression data analysis because of constant noise

Bittner M. et.al. "Molecular classification of cutaneous malignant melanoma by gene expression profiling" Nature 2000 http://www.nature.com/nature/journal/v406/n6795/full/406536A0.html

19/23

WADP - robustness of clustering

- Perturb each original gene expression profile by N(0, 0.01)
- Re-normalize the data, cluster
- Cluster-specific discrepancy rate: D/M. That is, for the M pairs of genes in an original cluster, count the number of gene pairs, D, that do not remain together in the clustering of the perturbed data, and take their ratio.
- The overall discrepancy ratio is the weighted average of the clusterspecific discrepancy rates.

WADP - robustness of clustering

- If there were originally m_j genes in the cluster j, then there are $M_j = m_j(m_j 1)/2$ pairs of genes
- In the new clustering, identify how many of these paris (D_j) still remain in the cluster
- Calculate D_i/M_i

$$WADP = \frac{\sum_{j=1}^{k} m_j D_j / M_j}{\sum_{j=1}^{k} m_j}$$

21/23

Summary

Clustering pitfalls

- · Any data even noise can be clustered
- It is quite possible for there to be several different classifications of the same set of objects.
- It should be clear that any clustering produced should be related to the features in which the investigator in interested.