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K-means clustering

- k-means clustering is a method of cluster analysis which aims to
partition n observations into k clusters in which each observation
belongs to the cluster with the nearest mean.

- It is similar to the expectation-maximization algorithm for mixtures of
Gaussians in that they both attempt to find the centers of natural
clusters in the data.
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How does K-Means work?

- We would like to partition that data set into K clusters Cy, ..., Ck
- Each observation belong to at least one of the K clusters

- The clusters are non-overlapping, i.e. no observation belongs to more than one
cluster

- The objective is to have a minimal “within-cluster-variation”, i.e. the elements
within a cluster should be as similar as possible

- One way of achieving this is to minimize the sum of all the pair-wise squared
Euclidean distances between the observations in each cluster.
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K-means clustering algorithm

Initialize: choose k points as cluster means

Repeat until convergence:

- Assignment: place each point X; in the cluster with the closest
mean.

- Update: recalculate the mean for each cluster
K-means always converges.

- The assignment and update steps always either reduce the
objective function or leave it unchanged.
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K-means clustering algorithm

Begin
Assign each item a class in 1 to K (randomly)
For 1 to max-iteration {
For each class 1to K {
Calculate centroid (one of the “/’ means”)
Calculate distance from centroid to each item

}

Assign each item the class of the nearest centroid
Exit if no items are re-assigned (convergence)

End

J. B. MacQueen "Some Methods for classification and Analysis of Multivariate
Observations" 1967 https://projecteuclid.org/euclid.bsmsp/1200512992
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K-means clustering

Advantage: gives sharp partitions of the data
Disadvantage: need to specify the number of clusters (K).

Goal: find a set of k clusters that minimizes the distances of each
point in the cluster to the cluster mean:
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K-means steps

- Simplified example
- Expression for two genes for 14 samples

- Some structure can be seen

K-means steps

- Choose K centroids
- These are starting values that the user picks.

- There are some data driven ways to do it
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K-means steps

- Find the closest centroid for each point
- This is where distance is used

- This is "first partition" into K clusters
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K-means steps

- Take the middle of each cluster
- Re-compute centroids in relation to the middle

- Use the new centroids to calculate distance
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K-means steps

- Expression for two genes for 14 samples

>
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PAM (K-medoids)

- Centroid - The average of the samples within a cluster
- Medoid - The “representative object” within a cluster

- Initializing requires choosing medoids at random.

12/57



K-means limitations

Final results depend on starting values

How do we chose K? There are methods but not much theory
saying what is best.

Where are the pretty pictures?
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Alternatives

K-means

- Initialize: choose & points as cluster means

- Repeat until convergence:
- Assignment: place each point X; in the cluster with the closest mean.

- Update: recalculate the mean for each cluster

Fuzzy k-means

- Initialize: choose k points as cluster means

- Repeat until convergence:
- Assignment: calculate probability of each point belonging to each cluster.
- Update: recalculate the mean for each cluster using these probabilities
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Alternatives

K-means Fuzzy k-means
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s is the degree of membership of x; in the cluster j. Larger values of r make the

clusters more fuzzy.

- Relationship to EM and Gaussian mixture models

https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/cmeans.html

Limits of K-means

K-means uses Euclidean distance
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- Gives most weight to largest differences
- Can’t be used if data are qualitative

- Centroid usually does not represent any datum

X;
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Self-organizing (Kohonen) maps

- Self organizing map (SOM) is a learning method which produces
low dimension data (e.g. 2D) from high dimension data (nD) through
the use of self-organizing neural networks

- E.g. an apple is different from a banana in more then two ways but
they can be differentiated based on their size and color only.
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Projection methods



Projection (dimensionality reduction) methods

- Linearly decompose the dataset into components that have a
desired property.

- There are largely two kinds of projection methods: principal
component analysis (PCA) and independent component analysis
(ICA).

- PCA produces a low-dimensisonal representation of a dataset.

- Each successive principal component is selected to be orthonormal
to the previous ones, and to capture the maximum information that
is not already present in the previous components.

- Components are linear combinations of the original data

- PCA also serves as a tool for data visualization
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Why dimensionality reduction

- Start with many measurements (high dimensional).
- Want to reduce to few features (lower-dimensional space).

- One way is to extract features based on capturing groups of
variance.

- Another could be to preferentially select some of the current
features most representative of the data.
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Intuition behind dimensionality reduction

>

molecules of interest, i.e. genes
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https://www.biorxiv.org/content/early/2017/10/02/196915.1
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Intuition behind dimensionality reduction

molecules of interest

OmE €= Associated molecular signatures  Patterns in groups of samples
(metagenes, modules, etc.)
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https://www.biorxiv.org/content/early/2017/10/02/196915.1
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PCA: quick theory

- Eigenvectors of covariance matrix.
- Find orthogonal groups of variance.
- Given from most to least variance.

- Components of variation.

- Linear combinations explaining the variance.

ooooooooo

http://setosa.io/ev/principal-component-analysis/
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Principal Components Analysis

- Performs a rotation of the data that maximizes the variance in the
new axes

- Projects high dimensional data into a low dimensional sub-space
(visualized in 2-3 dims)

- Often captures much of the total data variation in a few dimensions
(<3)

- Exact solutions require a fully determined system (matrix with full
rank), i.e. a “square” matrix with independent rows
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Principal Components Analysis: details

- The first principal component of a set of features X, X>,...,X, is
the normalized linear combination of the features

Zy = puXi + g Xo+. .. +¢p1 X,

P 2=1

that has the largest variance. Note "normalized” - ,._, ¢;

- The elements ¢, ¢21, ... ¢, are the loadings of the first principal
component. Together, them make up the principal component
Ioading vector d)] = (gl'm, qbz] g un ¢p])T

- The loadings are constrained so that their sum of squares is equal
to one, since othewise setting these elements to be arbitrary large in
absolute value couldd result in an arbitrary large variance.
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Computation of Principal Components

- Input: a n X p data set X. Since we are only interested in variance,
we assume that each of the variables in X has been centered to
have mean zero (that is, the column means of X are zero).

- We then look for the linear combination of the sample feature falues
of the form

Zilt = ¢uixi + dauxp+. . +dpixip

fori =1,...,nthat has largest sample variance under the constraint
that 37, ¢7 =1
- Since each of the x; has mean zero, so does z;;.

- Hence the sample variance of the z;; can be written as % Y
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Computation of Principal Components

- Plugging in the sample variance equation the first principal
component loading vector solves the optimization problem
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- The problem can be solved via a singular value decomposition of
the matrix X

- Z; is the first principal component with values z;, ...z
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Geometry of PCA

- The loading vector ¢, with elements ¢, ¢»1, ... ¢, defines a
direction in feature space along which the data vary the most

- If we project the n data points x4, ..., x, onto this direction, the
projected values (the new coordinates) are the principal component
scores 71, . . . 2,1 themselves
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Further principal components

- The second principal component is the linear combination of
X1, ... X, that has maximal variance among all linear combinations

that are uncorrelated with Z;
- The second ptincipal component scores z;,, ... z,» take the form

Zilt = Praxin + Ppnxpt+. .. +Ppxip

where ¢, is the second principal component loading vector, with
elements ¢z, ¢, ... Pp2

29/57

Further principal components

- Constraining Z, to be uncorrelated with Z; is equivalent to
constraining the direction ¢, to be orthogonal to the direction ¢;.
And so on for the other components

- The principal component directions ¢, ¢», ¢, . .. are the ordered
sequence of right singular vectors of the matrix X

- The variances of the components are the % times the squares of the
singular values

- There are at most min(n — 1, p) principal components
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Singular Value Decomposition
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https://research.fb.com/fast-randomized-svd/
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PCA for gene expression

- Given a gene-by-sample matrix X we decompose (centered and
scaled) X as USVT

- We don’t usually care about total expression level and the dynamic
range which may be dependent on technical factors

- U, V are orthonormal

- S diagonal-elements are eigenvalues = variance explained
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PCA for gene expression

- Columns of V are
- Principle components

- Eigengenes/metagenes that span the space of the gene
transcriptional responses

- Columns of U are

- The “loadings”, or the correlation between the column and the
component

- Eigenarrays/metaarrays - span the space of the gene
transcriptional responses

- Truncating U, V, D to the first kK dimensions gives the best k-rank
approximation of X
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Principal Components Analysis
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Example: Leukemia data sets by Golub et al.: Classification of ALL and AML
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PCA applied to cell cycle data

GeneExpression=UDVT

\

b) Eigenexpression Fractic
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Singular value decomposition for genome-wide expression data processing and modeling. PNAS
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ICA - Independent Component Analysis

- PCA assumes multivariate normally distributed data - gene
expression data are super-Gaussian

- ICA models observations as a linear combination of latent feature
variables, or components, which are chosen to be as statistically
independent as possible.

- For microarray data, observations consist of microarray gene
expression measurements, and independent components are
interpreted to be transcriptional modules that often correspond to
specific biological processes

http://www.sciencedirect.com/science/article/pii/S1532046410001000
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ICA - Independent Component Analysis

- X - an m X n matrix of n genes and m experiments
- ICA models this expression matrix as a linear combination of
intependent biological processes by decomposing X as:
X =AS

- S is a k X n source matrix
- A is a m X k mixing matrix

-k is a user supplied parameter < min(m, n)

Same preprocessing as for PCA - filter, center, scale
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ICA - Independent Component Analysis

- S is a k X n source matrix

- The components, or rows of S, are independent in the sense that
the gene weights in each component reflect samplings of
independent random variables.

- In the context of gene expression, this suggests that the sets of
genes comprising the groups strongly contributing to each
component have independent compositions.

- Columns of A are the distribution of the component's expression in
arrays (rows of §)

fastICA R package, https://cran.r-
project.org/web/packages/fastiCA/index.html

http://www.sciencedirect.com/science/article/pii/S1532046410001000
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Independent component analysis

- The source matrix S is used to biologically interpret the components
by studying their contributing genes

- The matrix A is used to associate the component with sample
features by studying the distribution of the samples on the
components according to their characteristics (e.g clinical or
molecular variables).

- MineICA - Analysis of an ICA decomposition obtained on genomics
data
https://bioconductor.org/packages/release/bioc/html/Minel CA.html
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Other decomposition techniques

- Non-negative matrix factorization

- A= WH (A, W, H are non-negative)

- H defined a meta-gene space: similar to eigengenes
- Classification can be done in the meta-gene space

A (rank M) = W H (rank k=2)

samples

Class1  Class 2

Jean-Philippe Brunet et al. PNAS 2004;101:4164-4169
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NMF, general formulation

V(Fxn) ~ W(rxk) X Hxn
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Why nonnegativity

NMF is more than 30-year old!

- previous variants referred to as:

- nonnegative rank fatorization (Jeter and Pye, 1981; Chen,
1984);

- positive matrix factorization (Paatero and Tapper, 1994);

- popularized by Lee and Seung (1999) for "learning the parts of
objects".

Since then, widely used in various research areas for diverse
applications
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NMF for clustering

NMF can handle overlapping clusters and provides soft cluster

membership indications.

. Cluster Cluster membership
Data points centroids indicators
& ~N s N { }
- J - /
Vv W H

NMF

- Many computational methods
- Cost function |A — WH|

- Squared error - aka Frobenius norm

- Kullback—-Leibler divergence

- Optimization procedure
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- Most use stochastic initialization, and the results don’t always

converge to the same answer
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NMF

- A = WH : Toy Biological interpretation
- Assume k =2

- We have 2 transcription factors that activate gene signatures W1
and W2

- H represents the activity of each factor in each sample
- TF effects are additive
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NMF

- NMF operates in the original non-negative measurement space
- Highly expressed genes matter more

- Positivity constraint is advantageous: positive correlation among
genes is more likely to be biologically meaningful

- NMF may more accurately capture the data generating process
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NMF vs. PCA

'.L/-j,i ’ . /t:

- Results of PCA vs NMF for reducing the leukemia data with 72 samples in
visualization. Sample 66 is mislabeled. However in 2-D display, the reduced data
by NMF can clearly show this mistake while that by PCA cannot demonstrate the
wrong. ‘PC’ stands for principal component and ‘BE’ means basis experiment.

Weixiang Liu, Kehong Yuan, Datian Ye “Reducing microarray data via
nonnegative matrix factorization for visualization and clustering analysis”
Journal of Biomedical Informatic 2008,
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Multidimensional scaling

MDS attempts to
Identify abstract variables which have generated the inter-object
similarity measures
Reduce the dimension of the data in a non-linear fashion

Reproduce non-linear higher-dimensional structures on a lower-
dimensional display
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Kruskal's stress

AN

Y (dj — dy)?
X

Stress =

- Goodness-of-fit - Measures degree of correspondence between
distances among points on the MDS map and the matrix input.

- Start with distances d;

" Fit decreasing numbers é:j
- Subtract, square, sum

- Take a square root

- Divide by a scaling factor
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MDS Basic Algorithm

- Obtain and order the M pairs of similarities

- Try a configuration in ¢ dimensions
- Determine inter-item distances and reference numbers
- Minimize Kruskal's stress

- Move the points around to obtain an improved configuration

- Repeat until minimum stress is obtained
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Comparison Between PCA, MDS

PCA tries to preserve the covariance of the original data

MDS tries to preserve the metric (ordering relations) of the original
space
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t-SNE: Nonlinear Dimensional Reduction
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- Maaten, Laurens van der, and Geoffrey Hinton. “Visualizing Data Using T-SNE.”
The Journal of Machine Learning Research 9, no. 2579-2605 (2008): 85.

- t-SNE, https://www.youtube.com/watch?v=EMD106bB2vY
- t-SNE tutorial https://mark-borg.github.io//blog/2016/tsne/
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t-SNE: Collapsing the Visualization to 2D

PCI

t-SNE: How it works.
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PCA and t-SNE Together

- Often t-SNE is performed on PCA components
- Liberal number of components.
- Removes mild signal (assumption of noise).

- Faster, on less data but, hopefully the same signal.
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Learn More About t-SNE

- Awesome Blog on t-SNE parameterization:
http://distill.pub/2016/misread-tsne

- Publication:
https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf

- Another YouTube Video: https://www.youtube.com/watch?
v=RJVL80Gg3IA

- Code: https://lvdmaaten.github.io/tsne/
- Interactive Tensor flow: http://projector.tensorflow.org/
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Other approaches

- Bi-clustering - cluster both the genes and the experiments simultaneously to find
appropriate context for clustering

- R packages: iBBiG, FABIA, biclust

- Stand-alone: BicAT (Biclustering Analysis Toolbox))

Clustering Clustering

conditions Genes Biclustering
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