Tukey's bi-weight

- Calculate probeset median $T_{0}=\operatorname{median}\left(X_{i}\right)$
- For each probe in a probeset, calculate

$$
u_{i}=\frac{X_{i}-T_{0}}{c * S_{n}+\varepsilon}
$$

c is a tuning constant, S_{n} is a scale estimate (Median Absolute Deviation, MAD), ε is a small positive constant to ensure we are not dividing by 0 (typically, 0.0001)

- Update our estimate T_{0} to obtain a better estimate of location

$$
\begin{aligned}
& T^{*}=\frac{\sum w\left(u_{i}\right) * X_{i}}{\sum w\left(u_{i}\right)} \\
& w\left(u_{i}\right)= \begin{cases}\left(1-u^{2}\right)^{2}, & |u| \leq 1 \\
0, & |u|>1\end{cases}
\end{aligned}
$$

$w\left(u_{i}\right)$ - Tukey's biweight (M-estimator)

MAS5

- First, subtract background. Divide array in 16 rectangular zones. For each zone, background is the average of the lowest 2% probe cell intensities. Denote bZk background of zone
- Calculate a weight. For a probe located at cell coordinates (X, Y) the distance from the probe to the center of each of the K zones is calculated $\mathrm{dk}(\mathrm{X}, \mathrm{Y})$
- $W_{k}(X, Y)=\frac{1}{d_{k}^{2}(X, Y)+\text { Smooth }}$, Smooth $=100$
- Weighted background estimate for that probe

$$
b(X, Y)=\frac{1}{\sum_{i=1}^{k} W_{i}(X, Y)} \sum_{i=1}^{k} W_{i}(X, Y) * b Z k
$$

- Previous steps are the "background correct" method = "mas" in expresso function

Pmcorrect method - to avoid negative values for PM-MM

- Calculate "specific background" $S B_{i}=$ Tukey's biweight $\left(\log _{2}\left(P M_{i j}\right)-\right.$ $\left.\log _{2}\left(M M_{i j}\right)\right)$
- "Idealized mismatch value. Different scale values

$$
I M_{i j}= \begin{cases}P M_{i j}, & \text { if } M M<P M \\ P M_{i j} / 2^{S B_{i},}, & \text { if } M M \geq P M \text { and } S B>\tau \\ P M_{i j} / \frac{\tau}{2^{1+\frac{\tau-S B_{i}}{\text { scale }}},} & \text { if } M M \geq P M \text { and } S B \geq \tau\end{cases}
$$

- $\tau=0$, and scale $\tau=10$
- Calculate Tukey biweight (second time) estimate for each probeset as

$$
2^{\text {Tukey's biweight }\left(\log _{2}\left(P M_{i j}-I M_{i j}\right)\right)}
$$

Li \& Wong method

- IxJ equations
- I θ_{i} array parameters, $\mathrm{J} \phi_{\mathrm{j}}$ gene parameters, I+J all parameters
- Assume ϕ_{j} is known, use to find best θ_{i}. Then, use θ_{i} estimates to estimate ϕ_{j}
- Iterative least squares procedure

RMA

- True signal follows some exponential distribution $\sim \exp (\alpha)$, and the background follows some normal distribution $\sim N\left(\mu, \sigma^{2}\right)$. True signal and background are independent. Estimate background (unclear, which procedure), then adjust PM values by BG.
- Carry out quantile normalization
- Take log2
- RMA expression summarization results from a median polish $\log _{2}(\text { Background correct PM })_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}$
- μ is the overall effect; α_{i} is the array effect; β_{j} is the probe effect. $\hat{\mu}+\alpha_{i}$ is the expression value for the probeset on array i
- How-to: Initialize all effects to 0. $m^{(0)}=0, a_{i}^{(0)}=0, b_{j}^{(0)}=0$
- Find row medians, subtract them from all observations in the corresponding row values.
- Find the column medians, then subtract ("polish") them from the corresponding column values. Update the effects:
- $\Delta m_{a}^{(n)}=\operatorname{median}\left(a_{i}^{(n-1)}+\Delta a_{i}^{(n)}\right)$
- $\Delta m_{b}^{(n)}=\operatorname{median}\left(b_{j}^{(n-1)}\right)$
- $m^{(n)}=m^{(n)}+\Delta m_{a}^{(n)}+\Delta m_{b}^{(n)}$
- where
- $a_{i}^{(n)}=a_{i}^{(n-1)}+\Delta a_{i}^{(n)}-\Delta m_{a}^{(n)}$
- $b_{j}^{(n)}=b_{j}^{(n-1)}+\Delta b_{j}^{(n)}-\Delta m_{b}^{(n)}$
- p. 481, section 15.7.1 explains analysis of variance principles - translate them to median polish approach.

