Expression summarization

Mikhail Dozmorov Fall 2017

Expression Quantification: Affy

Affymetrix Genechip is an oligonucleotide array consisting of a several perfect match (PM) and their corresponding mismatch (MM) probes that interrogate for a single gene.

- PM is the exact complementary sequence of the target genetic sequence, composed of 25 base pairs
- MM probe, which has the same sequence with exception that the middle base (13th) position has been reversed
- There are roughly 11-20 PM/MM probe pairs that interrogate for each gene, called a probe set

Affymetrix Expression Array Preprocessing

Background adjustment

Remove intensity contributions from optical noise and cross-hybridization

- · so the true measurements aren't affected by neighboring measurements
- 1. PM-MM
- 2. PM only
- 3. RMA
- 4. GC-RMA

3/36

Affymetrix Expression Array Preprocessing

Normalization

Remove array effect, make array comparable

- 1. Constant or linear (MAS)
- 2. Rank invariant (dChip)
- 3. Quantile (RMA)

Affymetrix Expression Array Preprocessing

Summarization

Combine probe intensities into one measure per gene

- 1. MAS 4.0, MAS 5.0
- 2. Li-Wong (dChip)
- 3. RMA

5/36

Expression Index estimates

Summarization

- Reduce the 11-20 probe intensities on each array to a single number for gene expression.
- The goal is to produce a measure that will serve as an indicator of the level of expression of a transcript using the PM (and possibly MM values).

Expression Index estimates

Single Chip

- MAS 4.0 (avgDiff): no longer recommended for use due to many flaws.
- MAS 5.0: use One-Step Tukey biweight to combine the probe intensities in log scale average $log_2(PM-BG)$

7/36

Expression Index estimates

Multiple Chip

- · MBEI (Li-Wong): a multiplicative model (Model based expression index)
- RMA (Irizarry): a robust multi-chip linear model fit on the log scale (Robust Multiarray Average)

Expression Quantification: Affy

Initially, Affymetrix signal was calculated as

$$AvgDiff = \frac{1}{A} \sum_{j \in A} (PM_j - MM_j)$$

where j indexes the probe pairs in the set A, where the set A excludes the max and min differences. This is known as the "Average Difference" method (MAS 4.0).

9/36

Expression Quantification: Affy

Initially, Affymetrix signal was calculated as

$$AvgDiff = \frac{1}{A} \sum_{j \in A} (PM_j - MM_j)$$

Problems

- · Large variability in PM-MM
- · MM probes may be measuring signal for another gene/EST
- · PM-MM may be negative => no log scale

Approach #1: MAS5

- · MAS5 was an attempt to develop a "standard" technique for 3' expression arrays
- · The flaws of MAS5 led to an influx of research in this area.
- The algorithm is best-described in an Affymetrix white-paper (sadd_whitepaper.pdf)
 [http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf], and is actually quite challenging to reproduce exactly in R.

11/36

MAS 5.0 Method

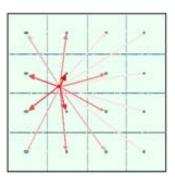
Steps for obtaining Affymetrix Microarray Suite 5.0 expression measures

- · Adjust cell intensities for background.
- Adjust PM values by subtracting an Ideal Mismatch (IM).
- · Take log2 transformation.
- Calculate a robust mean of the PM values for a probe set using Tukey's biweight estimator to estimate the Signal.
- Apply a scaling factor to the Signal values from previous step.

MAS5: Background & Noise

Background

· Divide chip into zones



13/36

MAS5: Background & Noise

Background

- · Divide chip into zones
- Select lowest 2% intensity values. This is zone background b for the zone bZ_k
- stdev of those values is zone variability
- Background at any location is the sum of all zones background, weighted by $w_k(x,y) = 1/(d_k^2(x,y) + fudgefactor)$
- The background b for cell x, y is:

$$b(x, y) = \frac{1}{\sum_{k=1}^{K} w_k(x, y)} \sum_{k=1}^{K} w_k(x, y) * bZ_k$$

MAS5: Background & Noise

Noise

- · Using same zones as above
- · Select lowest 2% background
- stdev of those values is zone noise nZ_k
- Noise at any location is the sum of all zone noise as above. Just substitute n(x, y) for b(x, y), and nZ_k for bZ_k

15/36

MAS5: Background adjusted intensity

```
A(x, y) = max(I'(x, y)) - b(x, y), NoiseFrac * n(x, y)) where I'(x, y) = max(I'(x, y), 0.5)
```

A - adjusted intensity = intensity minus background, the final value should be > noise

I - measured intensity

b - background

n - noise

NoiseFrac - another fudge factor = 0.5

MAS5: Ideal Mismatch

Because sometimes MM > PM, we need *Idealized Mismatch*

First, calculate a specific background ratio using the Tukey biweight

$$SB_i = T_{bi}(log_2(PM_{i,j} - log_2(mm_{i,j})) : j = 1, ..., n_i)$$

$$IM_{i,j} = \begin{cases} MM_{i,j}, & MM_{i,j} < PM_{i,j} \\ \\ \frac{PM_{i,j}}{2^{(SB_i)}}, & MM_{i,j} \ge PM_{i,j} \text{ and } SB_i > contrastc} \\ \\ \frac{PM_{i,j}}{2^{\frac{(contract)}{(contract)}} \sqrt{1000}}, & MM_{i,j} \ge PM_{i,j} \text{ and } SB_i \le contrastc} \end{cases}$$

default $contrast\tau = 0.03$ default $scale\tau = 10$

17/36

MAS5: Signal

Value for each probe: $V_{i,j} = max(PM_{i,j} - IM_{i,j}, \delta) \ default \ \delta = 2^{-20}$

Probe value: $PV_{i,j} = log_2(V_{i,j}), j = 1, \dots, n_i$

Modified mean of probe values: $SignalLogValue_i = T_{bi}(PV_{i,1}, \dots, PV_{i,n_i})$

Scaling factor (default Sc = 500): $sf = \frac{Sc}{TrimMean(2^{SignalLogValue_i}, 0.02, 0.98)}$

Final signal (default nf = 1): $ReportedValue(i) = nf * sf * 2^{SignalLogValue_i}$

MBEI: Modeling probe effect

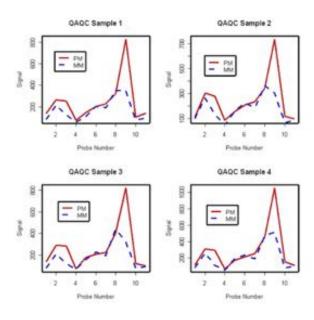
Li and Wong's observations

- · There is a large probe effect
- · There are outliers that are only noticed when looking across arrays
- · Non-linear normalization needed

"Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection" PNAS 2001 http://www.pnas.org/content/98/1/31.long

19/36

MBEI: Modeling probe effect



MBEI Expression Summaries

Li and Wong (2001) proposed a model-based expression index (MBEI) expression measures

For a set of arrays $i=1,\ldots,I$, for each probe set comprised of probe pairs $j=1,\ldots,J$, the PM and MM intensities for the i^{th} and j^{th} probe pair are modeled as

$$PM_{ij} = v_j + \alpha_j \theta_i + \phi_j \theta_i + \epsilon$$

$$MM_{ii} = v_i + \alpha_i \theta_i + \epsilon$$

$$y_{ij} = PM_{ij} - MM_{ij} = \phi_i \theta_i + \epsilon$$

21/36

MBEI Expression Summaries

$$PM_{ij} = v_j + \alpha_j \theta_i + \phi_j \theta_i + \epsilon$$

$$MM_{ii} = v_i + \alpha_i \theta_i + \epsilon$$

$$y_{ij} = PM_{ij} - MM_{ij} = \phi_i \theta_i + \epsilon$$

- \cdot θ_i is the model based expression index (MBEI) for the i^{th} array
- v_i is the mean intensity of the j^{th} probe pair due to non-specific hybridization
- α_i is the rate of increase of MM response of the j^{th} MM probe (non-specific effect)
- ϕ_j is the additional rate of increase in the PM response of the jth PM probe (specific effect)
- The errors ϵ are assumed independent normally distributed with variance σ^2 .

MBEI Expression Summaries

IxJ equations

 $I \theta_i$ array parameters, $J \phi_i$ gene parameters, I + J all parameters

Assume ϕ_i is known, use them to find best θ_i . Then, use θ_i estimates to estimate ϕ_i

Iterative least square procedure

Estimate θ_i is the expression index

23/36

What is RMA?

RMA = Robust Multi-Array

Why do we use a "robust" method?

 Robust summaries really improve over the standard ones by down weighing outliers and leaving their effects visible in residuals.

Why do we use "array"?

· To put each chip's values in the context of a set of similar values on other arrays

What is RMA?

- · It is a log scale linear additive model
- · Assumes all the chips have the same background distribution
- Does not use the mismatch probe (MM) data from the microarray experiments why?

25/36

What is RMA?

- Mismatch probes (MM) definitely have information about both signal and noise but using it without adding more noise is a challenge
- We should be able to improve the background correction using MM, without having the noise level blow up: topic of current research (GCRMA)
- · Ignoring MM decreases accuracy but increases precision

RMA

Steps for obtaining Robust Multi-Array Average Expression

- Adjust for background on a raw intensity scale using PM/MM data from *.CEL files.
- $PM_{ijg} = sg_{ijg} + bg_{ijg}$.
- True signal follows exponential distribution $sg_{ijg} \approx Exp(\lambda_{ijg})$
- The background follows normal distribution $bg_{ijg} \approx N(\beta, \sigma_i^2)$
- · True signal and background are independent

27/36

RMA

Steps for obtaining Robust Multi-Array Average Expression

- Adjust for background on a raw intensity scale using PM/MM data from *.CEL files.
- · Carry out quantile normalization using the PM bg adjusted values.
- Take log₂ of the normalized background corrected PMs
- $PM_{ijg} = sg_{ijg} + bg_{ijg}$.
- For each probe set g, fit the model where i is the array effect and j is the probe effect.

RMA

```
log_2(background\ corrected\ PM_{ij}) = \mu + \alpha_i + \beta_j + \epsilon_{ij} \mu + \alpha_i \text{ is the } log_2 \text{ expression for array } i = 1, \ldots, I \beta_j \text{ is the } log_2 \text{ affinity effect for probes } j = 1, \ldots, J \epsilon_{ij} \text{ is the error term}
```

The estimate of $\mu + \alpha_i$ gives the expression measures for a probe set n on array i.

A robust estimation procedure (median polish) is used to estimate the parameters in order to protect against outlier probes.

29/36

Tukey's median polish

 β_i - column (probe) effect

```
Array i - rows log_2(background\ corrected\ PM_{ij}) = \mu + \alpha_i + \beta_j + \epsilon_{ij} \alpha_i - row (array) effect
```

Alternately subtract row and column medians until sum of absolute residuals converges.

We are interested in the fitted (predicted) row values $\hat{\mu_i} = \hat{\mu} + \hat{\sigma_i}$

RMA procedure

The parameters in the above equations are unidentifiable. Need constraint $\sum \alpha_j = 0$ -initial row effect

Perform Tukey's Median Polish on the matrix of y_{ij} values in the i^{th} row and j^{th} column.

Basically, it entails iteratively normalizing row and column medians to 0 until convergence.

31/36

RMA procedure

Let \hat{y}_{ij} denote the fitted value for y_{ij} that results from the median polish procedure

Let $\hat{\alpha_j} = \hat{y_j} - \hat{y_.}$, where $\hat{y_j} = \sum_i \frac{y_{ij}}{I}$, and $\hat{y_.} = \sum_i \sum_j \frac{y_{ij}}{I*J}$, where I, J - number of arrays and probes

Let
$$\hat{\beta_i} = \sum_i \frac{y_{ij}}{J}$$

Then, $\hat{\beta_i}$ are the RMA measures of expression for array i.

RMA flavor

Original RMA: Irizarry et.al. (Nucleic Acids Research, 2003; Biostatistics, 2003) http://biostatistics.oxfordjournals.org/content/4/2/249.long

GC-RMA: Wu et.al. (J. Amer. Stat. Assoc., 2004), apply cross-hybridization correction that depends on G-C content of probe http://www.tandfonline.com/doi/abs/10.1198/016214504000000683

Frozen robust multiarray analysis (fRMA). McCall MN, Bolstad BM, Irizarry RA Biostatistics. 2010 http://biostatistics.oxfordjournals.org/content/11/2/242.long

33/36

GCRMA

- · Similar to RMA, but calculates background differently
- · Makes use of MM intensities to correct background
- Background more directly addresses nonspecific binding (appears to be sequence dependent)
- · Not necessarily better than RMA

Normalization: final touches

- Reduces systematic (not random) effects; makes it possible to compare several arrays
- There are many variations and extensions of the normalization methods. It's a highly opinionated field.
- Normalization affects the final analysis, but not often clear which strategy is the best; normalization may introduces more variability
- · Normalization can improve the quality of analysis, remove technical effects
- · Nothing can rescue bad quality data

35/36

Normalization: final touches

Preprocessing involves three main steps:

- Background / Normalization / Summarization
- Almost all preprocessing methods return expression levels on log2 scale

RMA (performs well overall)

- Background Correction
- Quantile Normalization
- · Summarization using Median Polish