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Biological vs. technical variability in gene
expression

- What is ultimately of interest in the use of gene expression
microarrays is the measurement of differences between

experimental and reference states or between different groups
of experimental units.

- Observed differences in microarray gene expression studies,
however, are recognized as arising from two sources:

- Biological variability — changes in signal intensity driven by
changes between biological states (healthy — disease)

- Technical variability — non-biological sources of variability
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Sources of technical variability

Systematic

- Amount of extracted RNA, efficiencies of RNA extraction, reverse
transcription, labeling, photodetection, GC content of probes

- Similar non-bilological effect on many measurements

- Corrections can be estimated from data and accounted for by
normalization
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Sources of technical variability

Stochastic

- PCR yield, DNA quality, spotting efficiency, spot size, non-specific
hybridization, stray signal

- Noise components & "Schmutz" (dirt)

- Too random to be explicitly accounted for — need to use error
modeling
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Why normalization

Main idea

- Remove the systematic bias in the data as completely as possible
while preserving the variation in the gene expression that occurs
because of biologically relevant changes in transcription.

- The purpose of normalization is to adjust the gene expression
values so that all genes on the array that are not differentially
expressed have similar values across all arrays.
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Goal of normalization

Assumption

- The average gene does not change in its expression level in the
biological sample being tested.

- Most genes are not differentially expressed

- Up- and down-regulated genes roughly cancel out the expression
effect.
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Two categories of normalization methods

Baseline (reference) based methods

- Use a reference set of selected genes (housekeeping, invariant,
spike-ins), or a baseline array

Complete (global, scaling) methods

- Combine information from all arrays in a given dataset
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Reference set

- Housekeeping genes - responsible for essential activities of cell
maintenance & survival but not involved in cell function or
proliferation. Such genes will be similarly expressed in all samples.

- Control genes - serve as artificial housekeeping gene set that
should have equal expression across arrays or channels
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Reference set

- Invariant set - genes that have the same rank across experiments.
Empirically chosen

- All genes - appropriate when the majority of the genes are believed
to be not differentially expressed

- Problems - defining reference sets may be biased. E.g., invariant
set genes will be selected from the center of the distribution
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Within- and between array normalization

Intra-slide normalization (within array)

- Applies to two-channel arrays

- Normalizes expression values to make intensities in two channels
consistent within each array

Inter-slide normalization (between array)

- Normalizes expression values to achieve consistency between
arrays

- Generally done after within-array normalization
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Normalization procedure

The normalized signal intensity ratio for clone k on array j will be

X log —Rjk c
.= —ci
] G]k J
Where

* Rj - the (background adjusted) Red signal
- Gj - the (background adjusted) Green signal

- cjx - the normalization factor

Calculating cjx

- Global normalization

- Intensity dependent normalization

- Lo(w)ess
- |nvariant set

- Quantile
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Global normalization

cjr is the same for all genes on array ;.

Underlying assumptions

- Red & Green intensities have ~linear relationship through the origin;

- All cDNA species within a sample will incorporate an equivalent
amount of dye per mole cDNA,;

- There are no other variables that contribute to dye bias across
slides.
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Calculating cj

A constant ¢; equal to the mean or median of the log ratios may be
subtracted from all spots on array j. For example,

o (1)
Cjx = ¢j = median | log——
Gik
for all clones/probes k in S.

Alternatively, fit a linear regression and use the estimated slope
parameter as the constant.
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Disadvantages of global normalization

- Does not account for non-linearity of signal intensities.
- Assumes cDNA from both dyes hybridized equally.

- More commonly, intensity dependent normalization methods are
used.
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Intensity-dependent normalization

Corrects intensities depending on the level of intensity, thereby
changing the shape of the distribution of data

- Bland Altman (MA) plots
- Fitting a non-linear exponential curve
- LOWESS/LOESS regression

16/28



Intensity dependent normalization

- Here the correction is still

X <lo —Rjk> c
= —Cit
] 8 ij J

but now cj, is the lowess fit, or ¢;; = f;(A;x) where f is some smoothing
function fitted to array j over all clones/probes k in S.

- Robust locally weighted regression of intensity log-ratios M on the
average log-intensity Aj overall (global lowess) can be used for
intensity dependent normalization.

- Other methods such as smoothing splines or exponential fits may
also work well.
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Intensity-dependent normalization: LOWESS

- LOcally WEighted Scatterplot Smoothing (Cleveland, 1979)

- First proposed for microarrays by Yang et al. (2002). Yang et al
(2002) used local window of 40%.

- Global LOWESS use implicit assumptions that, when stratified by
MRNA abundance,

- Only a minority of genes are expected to be differentially
expressed or,

- Any differential expression is as likely to be up-regulation as
well as down-regulation
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Intensity-dependent normalization: LOWESS

- Loess normalization is based on MA plots.

- Skewing reflects experimental artifacts such as the contamination of
one RNA source with genomic DNA or rRNA, the use of unequal
amounts of fluorescent probes.
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Intensity-dependent normalization: LOWESS

- Skewing can be corrected with local smoother: fitting a local
regression curve to the data and subtracting the predicted value
from the observed values

- Goal: minimize the standard deviation and place the mean log ratio
ato

20/28



Print-tip lowess

- LOWESS fits to the data within print-tip groups

- Sub-array normalization
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Affymetrix Method

- Scaling (Affymetrix method, sadd_whitepaper): First, choose a
baseline GeneChip against which all other GeneChips are
normalized.

- Calculate the 2% trimmed mean expression for the baseline
GeneChip, represented by X -

- Calculate the 2% trimmed mean expression for the j”* GeneChip,
represented by X;.

- The scaling factor is taken to be f; = X4 /Xj, so that the scaled
values on GeneChip j are

scaled _ . , .
X = By x X
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Rank invariant set

- Rather than using all genes for normalization, one may want to
restrict the set of genes used for normalization by identifying those
that are invariant.

- First, for each chip all genes are ranked; the invariant set is the set
of genes with the same rank for each of the chips.

- This is usually a very small number hence typically genes with
approximately the same rank are used.

- Once the set of rank invariant genes is identified, intensity
dependent normalization (fitting some smooth fit) is typically
applied.
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Quantile normalization

- Motivation from quantile-quantile plot

- Normal quantile-quantile plot consists of a plot of the ordered values
in your data versus the corresponding quantiles of a standard
normal distribution

- If the normal qqgplot is fairly linear, your data are reasonably
Gaussian; otherwise, they are not.
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Between-array normalization methods

- Quantile normalization: Make distribution of data equal across all
samples. Final distribution is the average of each quantile across
chips (Bolstad et.al., Bioinformatics (2003))

Before normalization
|||l00000||0| |"o|||||al

After normalization
N R NN
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Quantile normalization

1. Given n arrays of length p, form matrix X of dimension p X n where
each array is a column.

2. Sort each column of X to get X,,,. Remember to original order

3. Take the means across rows of X,,, and replace the values of X by
those means. The resulting matrix is X/,,,.

4. Get X,ormalizea DY rearranging each column of X/ . to have the same
ordering as original X.

Quantile normalization changes expression over many slides i.e.
changes the correlation structure of the data, may affect subsequent
analysis.
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Comparison of normalization techniques

Quantile
Unnormalized Scaling Normalization

AL o
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Variance stabilizing normalization (VSN)

* Log tranform can inflate vanance near the

asinh
background.
VSN transformation = asinhiai + bi *
 Wellidefined and meamngful close 1w 0,
* Ongnal intensities may be negative
< >< >

. 5
= hnwear = log

Inverse hyperbolic sine function ashin x = In(x + \/1 + x?). Has the
compressing effect on large values like regular In x, but has much less
of a compressing effect for small values. Defined on the entire real
number line, no need to add an offset like for regular log-

transformation.
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