Trimmed mean

Mean is too sensitive to extreme observations. Trimmed mean is designed to solve that problem. It involves trimming α percent observations from both ends. E.g.: If you are asked to compute 10% trimmed mean, $\alpha=0.10$

Given a bunch of observations, X_{i}

1. First, find n - number of observations
2. Reorder them as "order statistics" X_{i} from the smallest to the largest.
3. Compute $k=n \alpha$ (n times α)

If $n \alpha$ is an integer use $k=n \alpha$ and trim k observations at both ends. $R=$ remaining observations $=n-2 k=n^{*}(1-$ $2^{*} \alpha$)

$$
T=\frac{1}{\lfloor R\rfloor} * \sum_{\lfloor k\rfloor+1}^{n-\lfloor k\rfloor} X_{i}
$$

Note: α is half of the percent of trimming. Mean is $\alpha=0 \%$ trimmed mean. Median is $\alpha=\frac{1}{2}-\frac{1}{2 * n}$
Example 1: Find 10% trimmed mean of $2,4,6,7,11,21,81,90,105,121$
$n=10, \alpha=0.10, k=n \alpha=1$, which is an integer so trim exactly one observation at each end, since $k=1$. Thus trim off 2 and 121. we are left with $R=n-2 k=10-2=8$ observations.
10% trimmed mean $=(1 / 8) *(4+6+7+11+21+81+90+105)$
If $n \alpha$ has a fractional part present, trimmed mean is a bit more complicated. In the above example, if we wanted 15% trimmed mean, $\alpha=0.15, n=10, k=n \alpha=1.5$. Calculations yield k has an integer part 1 , and a fractional part 0.5 . $R=n-2 k=10-2^{*} 1.5=10-3=7$. Thus $R=7$ observations are retained. This R is then the correct denominator of trimmed mean.
Since integer part of k is 1 , we throw out the smallest 1 observation, i.e., we throw out Xmin=2. The next observation is 4 . $k=1.5$, has fractional part 0.5 , so we throw out only 0.5 part of 4 , and keep the remainder 0.5 times 4, or 2 . Similarly, at the high end we throw out $X \max =121$, and throw out 0.5 part of the next largest $(=105)$ and keep the rest $\left(105^{*} 0.5\right)=52.5$.
15% trimmed mean $=(1 / 7) *((0.5 * 4)+6+7+11+21+81+90+(0.5 * 105))$
Now find 27% trimmed mean. $\alpha=0.27, k=n \alpha=2.7$, has a fractional part. $R=n-2 k=10-5.4=4.6$ observations are retained. This R is the denominator. We throw 2 numbers from each end, and also throw 0.7 parts of the third numbers (keeping their 0.3 parts):
27% trimmed mean $=(1 / 4.6) *((0.3 * 6)+7+11+21+81+(0.3 * 90))$

General formula for trimmed mean

$$
T=\frac{1}{n(1-2 * \alpha)} *\left((1-r) *\left(X_{g+1}+X_{n-g}\right)+\sum_{i=g+2}^{n-g-1} X_{i}\right)
$$

X - sorted numerical vector
n - length of X
α - proportion to trim from each end
g - integer part of the $n^{*} \alpha$, or floor
r - fraction part of $n{ }^{*} \alpha, n^{*} \alpha-g$

