Mann-Whitney test for image segmentation. Non-parametric test

- Define patch (circle) and site (square around it).
- Randomly select **Y**₁-**Y**₈ **pixels outside of probe site**. Exterior pixels
- Rank order X₁-X_n probe site pixels, select 8 smallest. Interior pixels
- $H_0: \mu_x = \mu_y, H_1: \mu_x > \mu_y$
- If not rejected, select next 8 smallest and repeat until rejected.
- Once rejected, these and above are true foreground pixels.

Mann-Whitney U = Wilcoxon signed rank test. Non-parametric

- Let $Y_i = e_i$, for i = 1, ..., m
- Let $X_i = e_i + \Delta$, for i = 1, ..., n. $H_0: \Delta = 0$ Shift parameter is zero
- Combine X_i and Y_i one combined vector
- Order these m+n observation in ascending order. Note R_i to be rank.
- Sum the ranks for X_i , $W = \sum_{i=1}^n R_i$ this is our test statistics.
- Test statistics can be obtained from tables in Hollander-Wolfe "Nonparametric Statistical Methods" book
- Decision rule: One-sided test
 - H₀ vs. H_a that Δ > 0 at *α* level. Reject H₀ if W ≥ w(α, m, n). Or,
 - H_0 vs. H_a that Δ< 0, Reject H_0 if $W ≤ (n * (m + n + 1) w(\alpha, m, n))$. Or,
 - H₀ vs. H_a that $\Delta \neq 0$. Reject H₀ if $W \ge w(\alpha, m, n)$ or $\le (n * (m + n + 1) w(\alpha, m, n))$. Note $\alpha = sum(\alpha_1 + \alpha_2)$ is a sum of alphas for each hypothesis

- Large sample approximation: as n and m get large, W^* approaches

asymptotically standard normal distribution N(0,1). $W^* = \frac{W - (\frac{n(m+n-1)}{2})}{\sqrt{m*n*\frac{m+n-1}{12}}}$.

Numerator: Observed minus expected; Denominator: Square root of the variance.

- Wilcoxon distribution of U statistics. Relationship between W (rank statistics) and U: W = U + n * (n + 1)/2